Organometallics
Communication
(e) Activation and Functionalization of C-H Bonds; Goldberg, K. I.,
Goldman, A. S., Eds.; ACS Symposium Series 885; American Chemical
Society: Washington, DC, 2004.
Scheme 2
(2) (a) Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc.
2002, 124, 1378. (b) Periana, R. A.; Bhalla, G.; Tenn, W. J., III; Young,
K. J. H.; Liu, X. Y.; Mironov, O.; Jones, C. J.; Ziatdinov, V. R. J. Mol.
Catal. A 2004, 220, 7. (c) Conley, B. L.; Tenn, W. J., III; Young, K. J.
H.; Ganesh, S. K.; Meier, S. K.; Ziatdinov, V. R.; Mironov, O.;
Oxgaard, J.; Gonzales, J.; Goddard, W. A., III; Periana, R. A. J. Mol.
Catal. A 2006, 251, 8. (d) Owen, J. S.; Labinger, J. A.; Bercaw, J. E. J.
Am. Chem. Soc. 2006, 128, 2005.
(3) Ito, J.; Nishiyama, H. Eur. J. Inorg. Chem. 2007, 1114.
(4) Ito, J.; Shiomi, T.; Nishiyama, H. Adv. Synth. Catal. 2006, 348,
1235.
(5) Ito, J.; Kaneda, T.; Nishiyama, H. Organometallics 2012, 31, 4442.
(6) (a) Crabtree, R. H.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc.
1979, 101, 7738. (b) Crabtree, R. H.; Mellea, M. F.; Mihelcic, J. M.;
Quirk, J. M. J. Am. Chem. Soc. 1982, 104, 107. (c) Burk, M. J.;
Crabtree, R. H.; McGrath, D. V. J. Chem. Soc., Chem. Commun. 1985,
1829. (d) Burk, M. J.; Crabtree, R. H. J. Am. Chem. Soc. 1987, 109,
8025. (e) Gupta, M.; Hagen, C.; Flesher, R. J.; Kaska, W. C.; Jensen,
C. M. Chem. Commun. 1996, 2083. (f) Liu, F.; Pak, E. B.; Singh, B.;
Jensen, C. M.; Goldman, A. S. J. Am. Chem. Soc. 1999, 121, 4086.
(g) Fekl, U.; Kaminsky, W.; Goldberg, K. I. J. Am. Chem. Soc. 2003,
125, 15286. (h) Kostelansky, C. N.; MacDonald, M. G.; White, P. S.;
Templeton, J. L. Organometallics 2006, 25, 2993. (i) Khaskin, E.;
Zavalij, P. Y.; Vedernikov, A. N. J. Am. Chem. Soc. 2006, 128, 13054.
(j) Adams, J. J.; Arulsamy, N.; Roddick, D. M. Organometallics 2012,
31, 1439.
reversibly at this temperature. In the absence of base, higher
temperature can drive the C−H activation by promoting β-
hydride elimination and formation of octene and 3a (Scheme
2). Notably, it was demonstrated in an independent experiment
that heating 4a in octane at 200 °C results in the formation of
3a and octene.
In summary, the IrIII complex (dmPhebox)Ir(OAc)2(OH2)
(1a) was shown to dehydrogenate octane to yield octenes and
the IrIII−H complex 3a in quantitative yield. This reaction
occurs at a higher temperature (200 °C) than the previously
reported formation of the alkyl complex 4a, which is observed
in the presence of the base K2CO3 at 160 °C. The added base
acts to remove the acetic acid, allowing observation of the alkyl
complex 4a. Higher temperatures promote β-hydride elimi-
nation from 4a and generation of the IrIII−hydride 3a. While
catalytic alkane dehydrogenation was not observed, it is notable
that this IrIII C−H activation system was not inhibited by
nitrogen, water, or alkene, all significant issues for the (RPCP)Ir
systems that activate C−H bonds by oxidative addition to IrI.
Current efforts are focused on promoting catalytic alkane
dehydrogenation with the (dmPhebox)Ir system.
(7) The product of benzene activation, (iPrPhebox)Ir(OAc)(Ph)
(2b), has been characterized by 1H and 13C NMR spectroscopy, X-ray
crystallography, and elemental analysis. See the Supporting Informa-
tion for details.
(8) (a) Moulton, C. J.; Shaw, B. L. Dalton Trans. 1976, 1020.
(b) Kanzelberger, M.; Singh, B.; Czerw, M.; Krogh-Jespersen, K.;
Goldman, A. S. J. Am. Chem. Soc. 2000, 122, 11017. (c) Ben-Ari, E.;
Gandelman, M.; Rozenberg, H.; Shimon, L. J.; Milstein, D. J. Am.
Chem. Soc. 2003, 125, 4714. (d) Zhu, Y.; Chen, C.; Finnell, S. R.;
Foxman, B. M.; Ozerov, O. J. Am. Chem. Soc. 2006, 25, 3190. (e) Fan,
L.; Parkin, S.; Ozerov, O. J. Am. Chem. Soc. 2006, 128, 12400.
(f) Bernskoetter, W. H.; Hanson, S. K.; Buzak, S. K.; Davis, Z.; White,
P. S.; Swartz, R.; Goldberg, K. I.; Brookhart, M. J. Am. Chem. Soc.
2009, 131, 8603.
(9) (a) Kanzelberger, M.; Zhang, X.; Emge, T. J.; Goldman, A. S.;
Zhao, J.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125,
13644. (b) Frech, C. M.; Shimon, L. J. W.; Milstein, D. Organometallics
2009, 28, 1900. (c) Segawa, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem.
Soc. 2009, 131, 9201.
(10) (a) Zhang, X.; Kanzelberger, M.; Emge, T. J.; Goldman, A. S. J.
Am. Chem. Soc. 2004, 126, 13192. (b) Zhang, X.; Emge, T. J.; Ghosh,
R.; Goldman, A. S. J. Am. Chem. Soc. 2005, 127, 8250. (c) Zhang, X.;
Emge, T. J.; Ghosh, R.; Krogh-Jespersen, K.; Goldman, A. S.
Organometallics 2006, 25, 1303. (d) Segawa, Y.; Yamashita, M.;
Nozaki, K. J. Am. Chem. Soc. 2009, 131, 9201. (e) Huang, Z.; Zhou, J.;
Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 11458.
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, tables, and a CIF file giving experimental details for arene
C−H activation and octane dehydrogenation using 1a and
characterization data for 3a, including X-ray crystallographic
data. This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(11) Morales-Morales, D.; Lee, D. W.; Wang, Z.; Jensen, C. M.
Organometallics 2001, 20, 1144.
(12) When we synthesized 4a using the published procedure, a
mixture of 4a and 3a was always obtained (3:1 ratio determined by 1H
NMR spectroscopy in C6D6 against hexamethyldisiloxane internal
standard).
This work was supported by the NSF through the CCI Center
for Enabling New Technologies through Catalysis (CENTC;
CHE-1205189 and CHE-0650456). We thank Dr. Werner
Kaminsky for solving the X-ray structure of 3a. Prof. Tom R.
Cundari, Mr. Dale Pahls, Prof. Melanie S. Sanford, Prof. Elon A.
Ison, and Prof. William D. Jones are thanked for helpful
discussions.
(13) Hartwig, J. Organotransition Metal Chemistry; University Science
Books: Sausalito, CA, 2011; pp 275−276.
(14) The aromatic signals of the Ir−phenyl protons integrated to the
expected values against the dmPhebox ligand by 1H NMR spectroscopy.
REFERENCES
■
(1) (a) Arndsten, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T.
H. Acc. Chem. Res. 1995, 28, 154. (b) Shilov, A. E.; Shul’pin, G. B.
Chem. Rev. 1997, 97, 2879. (c) Crabtree, R. H. Dalton Trans. 2001,
2437. (d) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
1582
dx.doi.org/10.1021/om301267c | Organometallics 2013, 32, 1579−1582