1548
H. Chen et al. / Tetrahedron Letters 54 (2013) 1546–1549
Supplementary data
Cl
N
Cl
NH2
Cl
N
1 N HCl
8, EtOH,
NaOAc
Supplementary data associated with this article can be found, in
NaNO2, H2O
the
online
version,
at
9
10
O
References and notes
NC
N
O
1. Hariharan, D.; Saied, A.; Kocher, H. M. HPB (Oxford) 2008, 10, 58.
2. (a) Hezel, A. F.; Kimmelman, A. C.; Stanger, B. Z.; Bardeesy, N.; Depinho, R. A.
Genes Dev. 2006, 20, 1218; (b) Hidalgo, M. N. Engl. J. Med. 2010, 362, 1605.
3. (a) de Rooij, J.; Zwartkruis, F. J.; Verheijen, M. H.; Cool, R. H.; Nijman, S. M.;
Wittinghofer, A.; Bos, J. L. Nature 1998, 396, 474; (b) Kawasaki, H.; Springett, G.
M.; Mochizuki, N.; Toki, S.; Nakaya, M.; Matsuda, M.; Housman, D. E.; Graybiel,
A. M. Science 1998, 282, 2275.
N
HN
Cl
1
4. (a) Holz, G. G.; Chepurny, O. G.; Schwede, F. Cell. Signal. 2008, 20, 10; (b)
Gloerich, M.; Bos, J. L. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 355; (c) Grandoch,
M.; Roscioni, S. S.; Schmidt, M. Br. J. Pharmacol. 2010, 159, 265; (d) Breckler, M.;
Berthouze, M.; Laurent, A. C.; Crozatier, B.; Morel, E.; Lezoualc’h, F. Cell. Signal.
2011, 23, 1257.
Scheme 5. Synthesis of 3-(5-tert-butylisoxazol-3-yl)-2-[(3-chlorophenyl)-hydraz-
ono]-3-oxo-propionitrile 1.
5. Lorenz, R.; Aleksic, T.; Wagner, M.; Adler, G.; Weber, C. K. Pancreas 2008, 37,
102.
O
NC
EtO2C
N
N
6. (a) Tsalkova, T.; Mei, F. C.; Cheng, X. PLoS ONE 2012, 7, e30441; (b) Tsalkova, T.;
Mei, F. C.; Li, S.; Chepurny, O. G.; Leech, C. A.; Liu, T.; Holz, G. G.; Woods, V. L.,
Jr.; Cheng, X. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 18613; (c) Chen, H.; Tsalkova,
T.; Mei, F. C.; Hu, Y.; Cheng, X.; Zhou, J. Bioorg. Med. Chem. Lett. 2012, 22, 4038.
7. Almahariq, M.; Tsalkova, T.; Mei, F. C.; Chen, H.; Zhou, J.; Sastry, S. K.; Schwede,
F.; Cheng, X. Mol. Pharmacol. 2013, 83, 122.
8. (a) Abdel-Motaleb, R. M.; Makhloof, A. A.; Ibrahim, H. M.; Elnagdi, M. H. J.
Heterocycl. Chem. 2006, 43, 931; (b) Aziz, S. I.; Anwar, H. F.; Fleita, D. H.; Elnagdi,
M. H. J. Heterocycl. Chem. 2007, 44, 725.
CH3CN
O
O
MeLi, THF
Yield up to 90%
6
8
Scheme 6. Synthesis of 3-(5-tert-butylisoxazol-3-yl)-3-oxo-propionitrile 8 from 6.
9. (a) Hassaneen, H. M. E. Synth. Commun. 2007, 37, 3579; (b) Behbehani, H.;
Ibrahim, H. M.; Makhseed, S.; Mahmoud, H. Eur. J. Med. Chem. 2011, 46, 1813.
10. (a) Arseniyadis, S.; Kyler, K. S.; Watt, D. S. Org. React. (N.Y.) 1984, 31, 1; (b)
Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 4932; (c)
Ji, Y.; Trenkle, W. C.; Vowles, J. V. Org. Lett. 2006, 8, 1161.
11. (a) PinhoeMelo, T. M. V. D. Curr. Org. Chem. 2005, 9, 925; (b) Lepage, F.;
Tombret, F.; Cuvier, G.; Marivain, A.; Gillardin, J. M. Eur. J. Med. Chem. 1992, 27,
581.
O
NC
N
O
N
HN
NH2
a) 1 N HCl, NaNO2, H2O
R
b) 8, NaOAc, EtOH
12. Kowalski, C. J.; Haque, M. S. J. Org. Chem. 1985, 50, 5140.
13. Soli, E. D.; Manoso, A. S.; Patterson, M. C.; DeShong, P.; Favor, D. A.;
Hirschmann, R.; Smith, A. B., III J. Org. Chem. 1999, 64, 3171.
R
62-76% yield
(two steps from 6)
12a: R = 2-Cl, 76%
14. The crystallographic data have been deposited in full at the Cambridge
Crystallographic Data Centre, reference CCDC 913321, accessible at http://
12b: R = 4-Cl, 75%
12c: R = 2,5-diCl, 62%
12d: R = H, 76%
15. 1H and 13C NMR spectra (see spectra of crude product in the Supplementary
data) showed that the crude residue was only contaminated with some solvent
impurities and suitable for direct use in the next step.
Scheme 7. Synthesis of ESI-09 analogs 12a–d.
16. One-pot synthesis of 5-tert-butylisoxazole-3-carboxylic acid ethyl ester (6). To
a solution of pinacolone (5.0 g, 50.0 mmol) in THF (100 mL) was added NaH
(60%) (2.2 g, 55.0 mmol) at 0 °C. The reaction mixture was stirred at rt for about
30 min. Diethyl oxalate (7.3 g, 50.0 mmol) was added at 0 °C and the mixture
was then stirred at rt overnight. To the resulting solution, hydroxylamine
hydrochloride (3.8 g, 55.0 mmol) in ethanol (100 mL) was added dropwise. The
mixture was heated at reflux for 16 h. After this time the sodium chloride was
removed by filtration and the filtrate was concentrated under reduced
pressure. The residue was purified by short column chromatography on silica
gel eluting with hexane/ethyl acetate (4:1) to provide the title compound as a
colorless oil (8.57 g, 87%). 1H NMR (600 MHz, CDCl3) d 6.37 (s, 1H), 4.43 (q, 2H,
J = 7.2 Hz), 1.41 (t, 3H, J = 7.2 Hz), 1.37 (s, 9H). 13C NMR (150 MHz, CDCl3) d
183.3, 160.5, 156.2, 99.3, 62.1, 33.1, 28.9, 14.3. HRMS (ESI) calcd for C10H16NO3
198.1125 (M+H)+, found 198.1131.
procedure for the isoxazole synthon, followed by a modified proto-
col for the key cyanomethyl ketone and the subsequent coupling
step. The described synthetic strategies and optimized reaction
conditions may have general applications in the convenient prepa-
ration of various isoxazole and cyanomethyl ketone building
blocks. Moreover, the established concise and efficient synthesis
of the novel EPAC antagonist ESI-09 will facilitate its further
in vitro and in vivo pharmacological evaluations, as well as the
ongoing synthesis of new analogs for the structure–activity rela-
tionship study.
2-Bromo-1-(5-tert-butylisoxazol-3-yl)ethanone (7). To
a solution of 5-tert-
butylisoxazole-3-carboxylic acid ethyl ester (0.5 g, 2.5 mmol) in anhydrous
tetrahydrofuran (10 mL) was added dibromomethane (0.52 g, 3.0 mmol) under
nitrogen. The mixture was cooled to À78 °C and 1.6 M methyllithium in diethyl
ether (4.7 mL, 7.5 mmol) was added dropwise. The solution was stirred at
À78 °C for 40 min and then quenched with acetic acid (0.45 g, 7.5 mmol). The
mixture was warmed to 0 °C and poured onto ice/water (20 mL) and extracted
with ethyl acetate (50 mL). The organic layer was dried over Na2SO4, filtered,
and concentrated under reduced pressure. The residue was purified by short
column chromatography on silica gel eluting with hexane/ethyl acetate (4:1)
to provide the title compound as a colorless oil (524 mg, 84%). 1H NMR
(600 MHz, CDCl3) d 6.40 (s, 1H), 4.57 (s, 2H), 1.38 (s, 9H). 13C NMR (150 MHz,
CDCl3) d 185.7, 183.9, 159.7, 97.7, 33.2, 31.7, 28.9. HRMS (ESI) calcd for
C9H13BrNO2 246.0124 (M+H)+, found 246.0131.
Notes
The authors declare no competing financial interest.
Acknowledgments
This work was supported by Grants P30DA028821,
R21MH093844 (J.Z.), and R01GM066170, R21NS066510 (X.C.) from
the National Institute of Health, R. A. Welch Foundation Chemistry
and Biology Collaborative Grant from Gulf Coast Consortia (GCC)
for Chemical Genomics, Sealy and Smith Foundation grant (to the
Sealy Center for Structural Biology and Molecular Biophysics), John
Sealy Memorial Endowment Fund, and the Center for Addiction
Research (CAR) at the University of Texas Medical Branch.
2,2-Dibromo-1-(5-tert-butylisoxazol-3-yl)ethanone (11). Colorless oil. 1H NMR
(600 MHz, CDCl3) d 6.40 (s, 1H), 4.90 (s, 1H), 1.38 (s, 9H). 13C NMR (150 MHz,
CDCl3) d 193.8, 183.6, 159.2, 97.2, 66.7, 33.1, 28.9. HRMS (ESI) calcd for
C9H12Br2NO2 323.9229 (M+H)+, found 323.9320.
3-(5-tert-Butylisoxazol-3-yl)-3-oxo-propionitrile (8). To a solution of 2-bromo-
1-(5-tert-butylisoxazol-3-yl)ethanone (0.62 g, 2.5 mmol) in 10 mL of
acetonitrile was added trimethylsilyl cyanide (0.25 g, 2.5 mmol), followed by
2.5 mL (2.5 mmol) of tetrabutylammonium fluoride solution (1 M in THF). The