C. Chen et al. / Tetrahedron Letters 54 (2013) 1607–1611
1611
Schuster, D. I. J. Org. Chem. 2001, 66, 5449–5455; (f) Yang, C. D.; Cho, S.; Heeger,
A. J.; Wudl, F. Angew. Chem., Int. Ed. 2009, 48, 1592–1595; (g) Hachiya, H.;
Kakuta, T.; Takami, M.; Kabe, Y. J. Organomet. Chem. 2009, 694, 630–636; (h)
Wu, R.; Lu, X. Y.; Zhang, Y.; Zhang, J. M.; Xiong, W. T.; Zhu, S. Z. Tetrahedron
2008, 64, 10694–10698.
Supplementary data
Supplementary data associated with this article can be found, in
the
online
version,
at
7. (a) Ouchi, A.; Hatsuda, R.; Awen, B. Z. S.; Sakuragi, M.; Ogura, R.; Ishii, T.; Araki,
Y.; Ito, O. J. Am. Chem. Soc. 2002, 124, 13364–13365; (b) Ouchi, A.; Awen, B. Z. S.;
Hatsuda, R.; Ogura, R.; Ishii, T.; Araki, Y.; Ito, O. J. Phys. Chem. A 2004, 108, 9584–
9592; (c) Ouchi, A.; Awen, B. Z. S.; Luo, H. X.; Araki, Y.; Ito, O. Tetrahedron Lett.
2005, 46, 6713–6716.
the most important compounds described in this article.
References and notes
8. Ulmer, L.; Mattay, J. Eur. J. Org. Chem. 2003, 2933–2940.
9. Yan, M. D.; Cai, S. X.; Keana, J. F. W. J. Org. Chem. 1994, 59, 5951–5954.
10. Cases, M.; Duran, M.; Mestres, J.; Martín, N.; Solà, M. J. Org. Chem. 2001, 66,
433–442.
11. Guldi, D. M.; Hungerbühler, H.; Carmichael, I.; Asmus, K. D.; Maggini, M. J. Phys.
Chem. A 2000, 104, 8601–8608.
12. (a) Ikeda, A.; Fukuhara, C.; Kawaguchi, M.; Numata, M.; Shinkai, S.; Liu, S. G.;
Echegoyen, L. J. Chem. Soc., Perkin Trans. 2 2000, 307–310; (b) Ikeda, A.;
Fukuhara, C.; Shinkai, S. Chem. Lett. 1998, 415–416; (c) Yamazaki, M.; Fujitsuka,
M.; Ito, O.; Ikeda, A.; Fukuhara, C.; Kawaguchi, M.; Shinkai, S. J. J. Photochem.
Photobiol., A Chem. 2001, 140, 139–146.
13. (a) Otón, F.; Tárraga, A.; Espinosa, A.; Velasco, M. D.; Molina, P. J. Org. Chem.
2006, 71, 4590–4598; (b) Beer, P. D.; Cadman, J. Coord. Chem. Rev. 2000, 205,
131–155; (c) LeCours, S. M.; DiMagno, S. G.; Therien, M. J. J. Am. Chem. Soc.
1996, 118, 11854–11864; (d) Cao, Q. Y.; Pradhan, T.; Lee, M. H.; Choi, D. H.;
Kim, J. S. Tetrahedron Lett. 2012, 53, 4917–4920.
1. (a) Prato, M. Top. Curr. Chem. 1999, 199, 173–187; (b) Guldi, D. M. Chem.
Commun. 2000, 321–327; (c) Gust, D.; Moore, T. A.; Moore, L. A. Acc. Chem. Res.
2001, 34, 40–48; (d) Echegoyen, L.; Echegoyen, L. E. Acc. Chem. Res. 1998, 31,
593–601; (e) Thompson, B. C.; Fréchet, J. M. J. Angew. Chem., Int. Ed. 2008, 47,
58–77; (f) Martín, N.; Sánchez, L.; Illescas, B.; Pérez, I. Chem. Rev. 1998, 98,
2527–2547; (g) Nakamura, E.; Isobe, H. Acc. Chem. Res. 2003, 36, 807–815; (h)
Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695–703; (i) Matsuo, Y.; Zhang,
Y.; Soga, I.; Sato, Y.; Nakamura, E. Tetrahedron Lett. 2011, 52, 2240–2242.
2. (a) Nakahodo, T.; Okada, M.; Morita, H.; Yoshimura, T.; Ishitsuka, M. O.;
Tsuchiya, T.; Maeda, Y.; Fujihara, H.; Akasaka, T.; Gao, X. F.; Nagase, S. Angew.
Chem., Int. Ed. 2008, 47, 1298–1300; (b) Tsuruoka, R.; Nagamachi, T.; Murakami,
Y.; Komatsu, M.; Minakata, S. J. Org. Chem. 2009, 74, 1691–1697; (c) Lafleur-
Lambert, A.; Rondeau-Gagné, S.; Soldera, A.; Morin, J. Tetrahedron Lett. 2011, 52,
5008–5011; (d) Rotas, G.; Tagmatarchis, N. Tetrahedron Lett. 2009, 50, 398–401.
3. (a) Hirsch, A. Top. Curr. Chem. 1999, 199, 1–65; (b) López, A. M.; Mateo-Alonso,
A.; Prato, M. J. Mater. Chem. 2011, 21, 1305–1318.
4. (a) Prate, M.; Li, Q. C.; Wudl, F. J. Am. Chem. Soc. 1993, 115, 1148–1150; (b) Liu,
T. X.; Wei, T.; Zhu, S. E.; Wang, G. W.; Jiao, M. Z.; Yang, S. F.; Bowles, F. L.;
Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2012, 134, 11956–11959; (c)
Strom, T. A.; Barron, A. R. Chem. Commun. 2010, 46, 4764–4766.
5. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596–2599.
6. (a) Yashiro, A.; Nishida, Y.; Ohno, M.; Eguchi, S.; Kobayashi, K. Tetrahedron Lett.
1998, 39, 9031–9034; (b) González, S.; Martín, N.; Swartz, A.; Guldi, D. M. Org.
Lett. 2003, 5, 557–560; (c) Xiao, S. Q.; Li, Y. L.; Fang, H. J.; Li, H. M.; Liu, H. B.; Shi,
Z. Q.; Jiang, L.; Zhu, D. B. Org. Lett. 2002, 4, 3063–3066; (d) Guldi, D. M.;
González, S.; Martín, N.; Antón, A.; Garín, J.; Orduna, J. J. Org. Chem. 2000, 65,
1978–1983; (e) MacMahon, S.; Fong, R., II; Baran, P. S.; Safonov, I.; Wilson, S. R.;
14. Shafir, A.; Power, M. P.; Whitener, G. D.; Arnold, J. Organometallics 2000, 19,
3978–3982.
15. Cases, M.; Duran, M.; Solà, M. J. Mol. Model. 2000, 6, 205–212.
16. According to the literature, aminoferrocene has nearly the same redox
potential with dimethylaminoferrocene. See: Britton, W. E.; Kashyap, R.; El-
Hashash, M.; El-Kady, M. Organometallics 1986, 5, 1029–1031.
17. N,N-Dimethylbenznylporphyrin 6 gave the third oxidation potential at 1.151 V,
which was considered to be the oxidation of N,N-dimethyl group. See:
Macdonald, T. L.; Gutheim, W. G.; Martin, R. B.; Guengerich, F. P. Biochemistry
1989, 28, 2071–2077.
18. Prato, M.; Maggini, M.; Giacometti, C.; Scorrano, G.; Sandonh, G.; Farnia, G.
Tetrahedron 1996, 52, 5221–5234.
19. Fukuda, T.; Masuda, S.; Kobayashi, N. J. Am. Chem. Soc. 2007, 129, 5472–5479.