ꢀ
N O Bonds in N-Oligosaccharide Mimics
FULL PAPER
25e (156 mg, 0.298 mmol, 87%) as a colorless oil: Rf =0.46 (4:1 heptane/
EtOAc); [a]2D2 = +20.4 (c=0.96 in CHCl3); 1H NMR (500 MHz,
[D7]DMF, 373 K): d=2.10–2.14 (m, 1H; H5), 2.54 (t, J=10.6 Hz, 1H;
H2), 2.66 (t, J=11.2 Hz, 1H; H7), 3.38–3.41 (m, 1H; H7), 3.46 (t, J=
9.0 Hz, 1H; H4), 3.58–3.61 (m, 1H; H2), 3.65–3.70 (m, 2H; H6), 3.76–
Methyl 6-[(3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)-piperidinyl]-a,b-
d-glucopyranoside (43): A catalytic amount of NaOMe (25% solution in
MeOH, 1 drop) was added to
a stirred solution of 31b (80 mg,
0.087 mmol) in dry MeOH (2 mL). TLC analysis indicated complete con-
version of the starting material after 4 h. The solution was then concen-
trated in vacuo, and the crude material was purified by column chroma-
tography (EtOAc) to give the intermediate triol (47 mg, 0.077 mmol,
ꢀ
3.80 (m, 1H; H3), 4.50 and 4.51 (AB, JAB =12.3 Hz, 2H; CH2 Bn), 4.64
ꢀ
and 4.89 (AB, JAB =11.5 Hz, 2H; CH2 Bn), 4.68 and 4.70 (AB, JAB
=
89%) as
a
white foam: Rf =0.23 (EtOAc); [a]2D4 = +59.7 (c=1.5,
ꢀ
ꢀ
ꢀ
11.8 Hz, 2H; CH2 Bn), 4.73 (s, 2H; NO CH2 Bn), 7.27–7.38 ppm (m,
20H; H Ar); C NMR (125 MHz, [D7]DMF, 373 K): d=140.8 (Cq Bn),
MeOH); 1H NMR (500 MHz, [D7]DMF, 363 K): d=2.08–2.15 (m, 1H;
H5), 2.50 (t, J=10.7 Hz, 1H; H2), 2.63 (t, J=11.3 Hz, 1H; H7), 3.23 (t,
J=9.3 Hz, 1H; H4’), 3.37–3.40 (m, 1H; H2’), 3.39 (s, 3H; Me), 3.43–3.47
(m, 2H; H4, H7), 3.63 (t, J=9.1 Hz, 1H; H3’), 3.66–3.72 (m, 4H; H2,
H5’, H6), 3.76–3.79 (m, 1H; H3), 3.81 (dd, J=6.6, 11.3 Hz; 1H, H6’),
3.97 (brs, 1H; OH), 4.08 (dd, J=2.2, 11.3 Hz, 1H; H6’), 4.33 (brs, 1H;
13
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
140.5 (Cq Bn), 140.3 (Cq Bn), 139.9 (Cq Bn), 129.5 (CH Ar), 129.3
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
(CH Ar), 129.3 (CH Ar), 129.2 (CH Ar), 128.8 (CH Ar), 128.7 (CH
ꢀ
ꢀ
ꢀ
ꢀ
Ar), 128.6 (CH Ar), 128.5 (CH Ar), 128.5 (CH Ar), 128.3 (CH Ar),
81.5 (C4), 80.1 (C3), 75.1 (NO CH2 Bn), 75.0 (CH2 Bn), 74.1 (CH2
Bn), 73.0 (CH2 Bn), 70.6 (C6), 59.0 (C2), 58.1 (C7), 40.9 ppm (C5); IR
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
OH), 4.50 (brs, 1H; OH), 4.51 and 4.52 (AB, JAB =12.1 Hz, 2H; CH2
(neat): nmax =1454, 1364, 1095, 1077, 1046, 1027, 733, 695 cmꢀ1; HRMS
(ESI-TOF): calcd for C34H38NO4 [M+H]+: 524.2801; found: 524.2789.
Representative example 2: Methyl 2,3,4-tri-O-benzoyl-6-[(3R,4R,5R)-3,4-
bis(benzyloxy)-5-((benzyloxy)methyl)-piperidinyl]-a-d-glucopyranoside
31b was prepared according to the general procedure by using dialde-
hyde 22a (113 mg, 0.25 mmol) and methyl 2,3,4-tri-O-benzoyl-6-O-
amino-a-d-glucopyranoside hydrochloride[12a] (349 mg, 0.63 mmol) in
MeOH (1 mL) and THF (0.1 mL). After addition of AcOH (290 mL,
5 mmol, in two portions) and NaBH3CN (157 mg, 2.5 mmol, in two por-
tions), the mixture was stirred for 18 h and worked up as described. The
crude product was purified by column chromatography (9:1!7:3 hep-
tane/EtOAc) to yield 31b (162 mg, 0.176 mmol, 70%) as a colorless oil:
Rf =0.63 (3:2 heptane/EtOAc); [a]2D2 = +46.4 (c=0.81, CHCl3); 1H NMR
(500 MHz, [D7]DMF, 373 K): d=2.03–2.10 (m, 1H; H5), 2.49 (t, J=
10.4 Hz, 1H; H2), 2.61 (t, J=11.3 Hz, 1H; H7), 3.37–3.40 (m, 1H; H7),
3.43 (t, J=9.1 Hz, 1H; H4), 3.57 (s, 3H; OMe), 3.60–3.64 (m, 3H; H2,
ꢀ
Bn), 4.63 and 4.89 (AB, JAB =11.3 Hz, 2H; CH2 Bn), 4.64 (d, J=3.5 Hz,
ꢀ
1H; H1’), 4.71 and 4.74 (AB, JAB =11.8 Hz, 2H; CH2 Bn), 7.26–7.42 ppm
13
ꢀ
ꢀ
(m, 15H; H Ar); C NMR (125 MHz, [D7]DMF, 363 K): d= 140.7 (Cq
Bn), 140.5 (Cq Bn), 140.3 (Cq Bn), 129.4 (CH Ar), 129.3 (CH Ar),
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
129.2 (CH Ar), 128.8 (CH Ar), 128.7 (CH Ar), 128.7 (CH Ar), 128.5
(CH Ar), 128.3 (CH Ar), 101.7 (C1’), 81.6 (C4), 80.2 (C3), 75.6 (C3’),
75.0 (CH2 Bn), 74.1 (C2’), 74.1 (CH2 Bn), 73.6 (C6’), 73.0 (CH2 Bn),
73.0 (C4’), 72.1 (C5’), 70.6 (C6), 58.9 (C2), 58.1 (C7), 55.9 (Me), 40.8 ppm
(C5); IR (neat): nmax =3392, 2925, 2856, 1454, 1364, 1102, 1073, 1049,
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
1030, 749, 736, 698 cmꢀ1
; HRMS (ESI-TOF): calcd for C34H44NO9
[M+H]+: 610.3016; found: 610.3022. BCl3 (1m solution in hexanes,
450 mL, 0.45 mmol, 9 equiv) was added to a solution of the triol (30 mg,
0.049 mmol) in CH2Cl2 (5 mL), and the mixture was stirred at room tem-
perature for 5 h. After addition of MeOH (5 mL), the solution was stir-
red for 30 min and concentrated in vacuo. The crude residue was purified
by flash column chromatography (90:5:5!80:15:5 iPrOH/H2O/NH4OH)
to give 43 as a colorless oil that contained a 1:1 mixture of a and b anom-
ers (11.5 mg, 0.034 mmol, 69%), which were separated by preparative
HPLC (SunFire prep C18 OBD column, Waters, 150ꢅ19 mm, isocratic
99:1:0.1 H2O/MeOH/HCOOH, 17 mLminꢀ1, ELS detection) and charac-
terized separately: Rf =0.51 (70:20:10 iPrOH/H2O/NH4OH); a-43: tR =
9.6 min (SunFire C18 5 mm column, Waters, 150ꢅ4.6 mm, isocratic
H6), 3.75 (dt, J=4.1, 8.8 Hz, 1H; H3), 3.98 and 4.01 (ABX, JAB
=
11.9 Hz, AX =3.2 Hz, BX =5.0 Hz, 2H; H6’), 4.38 (ddd, J=3.4, 4.6,
J
J
ꢀ
10.1 Hz, 1H; H5’), 4.48 and 4.49 (AB, JAB =12.3 Hz, 2H; CH2 Bn), 4.62
ꢀ
and 4.86 (AB, JAB =11.5 Hz, 2H; CH2 Bn), 4.64 and 4.67 (AB, JAB
=
ꢀ
11.8 Hz, 2H; CH2 Bn), 5.30 (d, J=3.8 Hz, 1H; H1’), 5.40 (dd, J=3.8,
10.1 Hz, 1H; H2’), 5.60 (t, J=9.8 Hz, 1H; H4’), 6.09 (t, J=9.8 Hz, 1H;
ꢀ
ꢀ
99:1:0.1 H2O/MeOH/HCOOH, 1 mLminꢀ1
,
ELS detection); [a]2D4 = +
H3’), 7.28–7.64 (m, 24H; H Ar), 7.86–7.98 ppm (m, 6H; H Ar);
1
13C NMR (125 MHz, [D7]DMF, 373 K): d=166.8 (C=O), 166.6 (C=O),
62.2 (c=0.32, H2O); H NMR (500 MHz, [D7]DMF, 363 K): d=1.77–1.84
(m, 1H; H5), 2.32 (t, J=10.6 Hz, 1H; H2), 2.37 (t, J=11.3 Hz, 1H; H7),
3.19 (t, J=9.1 Hz, 1H; H4), 3.21 (t, J=9.1 Hz, 1H; H5’), 3.38 (dd, J=
3.8, 9.8 Hz, 1H; H2’), 3.40 (s, 3H, Me), 3.42–3.46 (m, 1H; H7), 3.47–3.50
(m, 1H; H2), 3.55–3.64 (m, 3H; H3, H6, H3’), 3.67–3.71 (m, 1H; H4’),
3.76–3.80 (m, 2H; H6, H6’), 4.06 (dd, J=1.9, 11.3 Hz, 1H; H6’),
4.63 ppm (d, J=3.5 Hz, 1H; H1’); 13C NMR (125 MHz, [D7]DMF,
363 K): d=101.7 (C1’), 76.5 (C4), 75.6 (C3’), 74.1 (C2’), 73.4 (C6’), 73.0
(C5’), 72.3 (C3), 72.1 (C4’), 63.1 (C6), 61.7 (C2), 58.4 (C7), 55.8 (Me),
43.2 ppm (C5); IR (neat): nmax =3368, 2922, 1044 cmꢀ1; HRMS (ESI-
TOF): calcd for C13H25NNaO9 [M+Na]+: 362.1427; found: 362.1430; b-
43: tR =8.5 min (SunFire C18 5 mm column, Waters, 150ꢅ4.6 mm, isocrat-
ic 99:1:0.1 H2O/MeOH/HCOOH, 1 mLminꢀ1, ELS detection); [a]D24 = +
6.6 (c=0.32, H2O); 1H NMR (500 MHz, [D7]DMF, 363 K): d=1.78–1.85
(m, 1H; H5), 2.34 (t, J=10.7 Hz, 1H; H2), 2.37 (t, J=11.3 Hz, 1H; H7),
3.16–3.24 (m, 3H; H2’, H4, H5’), 3.38 (t, J=8.8 Hz, 1H; H3’), 3.41–3.50
(m, 3H; H2, H4’, H7), 3.48 (s, 3H; Me), 3.56–3.61 (m, 2H; H3, H6), 3.76
(dd, J=6.9, 11.5 Hz, 1H; H6’), 3.79 (dd, J=4.4, 10.7 Hz, 1H; H6), 4.10
(dd, J=1.9, 11.3 Hz, 1H; H6’), 4.18 ppm (d, J=7.9 Hz, 1H; H1’);
13C NMR (125 MHz, [D7]DMF, 363 K): d=105.6 (C1’), 79.0 (C3’), 76.5,
76.1, 75.4 (C4, C4’, C5’), 73.5 (C6’), 72.8 (C2’), 72.3 (C3), 63.1 (C6), 61.8
(C2), 58.5 (C7), 56.8 (Me), 43.2 ppm (C5).
ꢀ
ꢀ
ꢀ
ꢀ
166.3 (C=O), 140.6 (Cq Bn), 140.3 (Cq Bn), 140.2 (Cq Bn), 134.5 (CH
ꢀ
ꢀ
ꢀ
ꢀ
Ar), 134.5 (CH Ar), 134.3 (CH Ar), 130.9 (2Cq Bz), 130.5 (Cq Bz),
ꢀ
ꢀ
ꢀ
ꢀ
130.3 (CH Ar), 129.7 (CH Ar), 129.7 (CH Ar), 129.5 (CH Ar), 129.3
(CH Ar), 129.2 (CH Ar), 129.1 (CH Ar), 128.7 (CH Ar), 128.7 (CH
Ar), 128.6 (CH Ar), 128.4 (CH Ar), 128.4 (CH Ar), 98.5 (C1’), 81.3
(C4), 80.0 (C3), 74.8 (CH2 Bn), 74.0 (CH2 Bn), 73.3 (C2’), 72.9 (CH2
Bn), 72.7 (C3’), 72.3 (C6’), 71.8 (C4’), 70.4 (C6), 69.4 (C5’), 58.7 (C2),
57.9 (C7), 56.4 (OMe), 40.7 ppm (C5); IR (neat): nmax =2922, 2856, 1725,
1452, 1276, 1259, 1092, 1068, 1050, 1026, 706, 697 cmꢀ1; HRMS (ESI-
TOF): calcd for C55H56NO12 [M+H]+: 922.3803; found: 922.3772.
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
Selected examples of deprotections:
(3R,4R,5R)-1-(Hydroxy)-5-(hydroxymethyl)piperidine-3,4-diol
hydro-
chloride (40a): BCl3 (1m solution in hexanes, 870 mL, 0.867 mmol,
12 equiv) was added to a solution of 27b (40 mg, 0.072 mmol) in CH2Cl2
(7 mL), and the mixture was stirred at room temperature for 4 h. After
addition of MeOH (5 mL), the solution was stirred for 30 min and con-
centrated in vacuo. The crude residue was purified by flash column chro-
matography (95:4:1 iPrOH/H2O/NH4OH). The hydroxylamine was then
protonated by addition of a 3m HCl solution in MeOH (1 mL) and con-
centrated in vacuo to give 40a (13.8 mg, 0.069 mmol, 96%) as a white
amorphous solid (1:1 mixture of anomers): Rf =0.35 (95:4:1 iPrOH/H2O/
NH4OH); [a]2D4 = +8.0 (c=0.56, EtOH, free base); 1H NMR (300 MHz,
D2O, 300 K): d=1.89–2.01 (m, 1H; H5b), 2.32–2.44 (m, 1H; H5a), 3.20–
3.88 (m, 15H; H2, H3b, H4, H6, H7), 4.14 ppm (ddd, J=4.8, 9.1, 10.5 Hz,
1H; H3a); 13C NMR (75 MHz, D2O, 300 K): d=70.6, 70.4 (C4), 68.2
(C3b), 66.0 (C3a), 59.0, 58.7, 58.6, 57.7 (C2, C6), 56.4, 55.3 (C7), 39.8
(C5b), 37.4 ppm (C5a); IR (neat): nmax =3231, 3031, 1433, 1173, 1094,
Selected example of glycoconjugation and deprotection:
(2R,3R,4S,5S,6R)-2-(4-(3-(((3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)-
piperidin-1-yl)oxy)propyl)-1H-1,2,3-triazol-1-yl)-6-(hydroxymethyl)tetra-
hydro-2H-pyran-3,4,5-triol (45b): In
a schlenk flask, 30b (75 mg,
0.150 mmol, 1 equiv) and b-d-glucopyranosyl azide (31 mg, 0.150 mmol,
1 equiv) were dissolved in a 1:1 mixture of tBuOH and H2O (1.5 mL). A
375 mm aqueous solution of phenylene diamine (61 mL, 23 mmol,
0.15 equiv), a 250 mm aqueous solution of sodium ascorbate (61 mL,
15 mmol, 0.10 equiv), and a 125 mm aqueous solution of CuSO4 (61 mL,
1044, 1016, 985 cmꢀ1
;
HRMS (ESI-TOF): calcd for C6H14NO4
[MꢀHCl+H]+: 164.0923; found: 164.0916.
Chem. Eur. J. 2013, 19, 2168 – 2179
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2177