Organic Process Research & Development
Article
MS (ESI): 355 (M+H)+; 353 (M-H)−. HRMS: C20H22N2O4
[M+H]+: calculated 355.1658, measured 355.1669; Δppm 3.1.
Mp: 193−195 °C.
(9) Moreno-Sanz, G.; Barrera, B.; Guijarro, A.; d’Elia, I.; Otero, J. A.;
Alvarez, A. I.; Bandiera, T.; Merino, G.; Piomelli, D. Pharmacol. Res.
2011, 64, 359.
(10) Sasso, O.; Bertorelli, R.; Bandiera, T.; Scarpelli, R.; Colombano,
G.; Armirotti, A.; Moreno-Sanz, G.; Reggiani, A.; Piomelli, D.
Pharmacol. Res. 2012, 65, 553.
(11) Narender, N.; Srinivasu, P.; Ramakrishna Prasad, M.; Kulkarni,
S. J.; Raghavan, K. V. N. Synth. Commun. 2002, 32, 2313.
(12) Hoger, S. Liebigs Ann./Recueil 1997, 273.
ASSOCIATED CONTENT
* Supporting Information
■
S
Procedures for the preparation of compounds 10b, 14, and 15,
copies of NMR spectra of compounds 2, 7, 9, 10a-b, 14, and
15, and reaction time course of the Suzuki coupling reaction of
compound 14 with 10a. This material is available free of charge
(13) The regiochemistry of the reaction is in accordance with a
literature report on the bromination of (4-methoxyphenyl) acetate
leading to (2-bromo-4-methoxy-phenyl) acetate as the major product:
see Roughley, S., Walls, S., Hart, T., Parsons, R., Brough, P., Graham,
C., Macias, A. U.S. Patent Appl. 2012/028953, 2012. Direct
bromination of 8 is reported to give 4-benzyloxy-2-bromophenol:
see Epple, R., Cow, C., Azimiora, M., Russo, R., Reid, S. W. PCT Int.
Appl. WO 2007/056496, 2007.
AUTHOR INFORMATION
Corresponding Author
■
1
Notes
(14) Regioisomeric ratio was determined by comparison of the H
The authors declare no competing financial interest.
NMR spectrum of the crude material with that of an authentic sample
of (4-benzyloxy-2-bromophenyl)-N-cyclohexylcarbamate (see Sup-
porting Information). Integration of the signals of the benzylic
protons in the crude material gave a >99:1 ratio between compound
10a and its regioisomer.
(15) General reviews on the Suzuki reaction: Miyaura, N.; Suzuki, A.
Chem. Rev. 1995, 95, 2457. Kotha, S.; Lahiri, K.; Kashinath, D.
Tetrahedron 2002, 58, 9633. Suzuki, A. Angew. Chem., Int. Ed. 2011, 50,
2.
(16) As an example, the phenol 5 accounted for only 8% of the
reaction mixture when 10a (1 equiv) and 11 (1.5 equiv) were heated
at 80 °C in dioxane in the presence of KOAc (2.5 equiv) for 3 h.
Under the same experimental conditions, but using DMF as the
solvent, the phenol 5 accounted for 94% of the reaction mixture after
only 30 min.
ACKNOWLEDGMENTS
■
We thank Andrea Armirotti for high resolution mass experi-
ments, Luca Goldoni for NMR support, Sine Mandrup Bertozzi
for analytical support, and REDOX S.n.c., Monza (Italy) for
ICP-MS analysis.
REFERENCES
■
(1) Cravatt, B. F.; Giang, D. K.; Mayfield, S. P.; Boger, D. L.; Lerner,
R. A.; Gilula, N. B. Nature 1996, 384, 83.
(2) Ahn, K.; McKinney, M. K.; Cravatt, B. F. Chem. Rev. 2008, 108,
1687.
(3) Di Marzo, V. Nat. Rev. Drug Discovery 2008, 7, 438.
(4) (a) Seierstad, M.; Breitenbucher, J. G. J. Med. Chem. 2008, 51,
7327. (b) Otrubova, K.; Ezzili, D. L.; Boger, C. Bioorg. Med. Chem. Lett.
2011, 4674.
(5) (a) Tarzia, G.; Duranti, A.; Tontini, A.; Piersanti, G.; Mor, M.;
Rivara, S.; Plazzi, P. V.; Park, C.; Kathuria, S.; Piomelli, D. J. Med.
Chem. 2003, 46, 2352. (b) Mor, M.; Rivara, S.; Lodola, A.; Plazzi, P.
V.; Tarzia, G.; Duranti, A.; Tontini, A.; Piersanti, G.; Kathuria, S.;
Piomelli, D. J. Med. Chem. 2004, 47, 4998. (c) Mor, M.; Lodola, A.;
Rivara, S.; Vacondio, F.; Duranti, A.; Tontini, A.; Sanchini, S.;
Piersanti, G.; Clapper, J. R.; King, A. R.; Tarzia, G.; Piomelli, D. J. Med.
Chem,. 2008, 51, 3487.
(17) Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Org. Chem.
1994, 59, 6095.
(18) (a) Edwards, J. P.; Zhi, L.; Pooley, C. L. F.; Tegley, C. M.; West,
S. J.; Wang, M.; Gottardis, M. M.; Pathirana, C.; Schrader, W. T.;
Jones, T. K. J. Med. Chem. 1998, 41, 2779. (b) Sheng, W. Tetrahedron
Lett. 1997, 38, 5575.
(19) Wang, B.; Sun, H.; Sun, Z. Eur. J. Org. Chem. 2009, 3688.
(20) (a) Yoo, Y.; Choi, J.; Song, J.; Oh, N.; Zin, W.; Park, S.; Chang,
T.; Lee, M. J. Am. Chem. Soc. 2004, 126, 6294. (b) Kawaguchi, K.;
Nakano, K.; Nozaki, K. Org. Lett. 2008, 10, 1199. (c) Kawaguchi, K.;
Nakano, K.; Nozaki, K. J. Org. Chem. 2007, 72, 5119.
(6) (a) Ahn, K.; Smith, S. E.; Liimatta, M. B.; Beidler, D.; Sadagopan,
N.; Dudley, D. T.; Young, T.; Wren, P.; Zhang, Y.; Swaney, S.;
Becelaere, K. V.; Blankman, J. L.; Nomura, D. K.; Bhattachar, S. N.;
Stiff, C.; Nomanbhoy, T. K.; Weerapana, E.; Johnson, D. S.; Cravatt, B.
F. J. Pharmacol. Exp. Ther. 2011, 338, 114. (b) Johnson, D. S.; Stiff, C.;
Lazerwith, S. E.; Kesten, S. R.; Fay, L. K.; Morris, M.; Beidler, D.;
Liimatta, M. B.; Smith, S. E.; Dudley, D. T.; Sadagopan, N.;
Bhattachar, S. N.; Kesten, S. J.; Nomanbhoy, T. K.; Cravatt, B. F.;
Ahn, K. ACS Med. Chem. Lett. 2011, 2, 91.
(7) (a) Tarzia, G.; La Rana, G.; Calignano, A.; Giustino, A.; Tattoli,
M.; Palmery, M.; Cuomo, V.; Piomelli, D. Nat. Med. 2003, 9, 76.
(b) Gobbi, G.; Bambico, F. R.; Mangieri, R.; Bortolato, M.;
Campolongo, P.; Solinas, M.; Cassano, T.; Morgese, M. G.;
Debonnel, G.; Duranti, A.; Tontini, A.; Tarzia, G.; Mor M. Trezza,
V.; Goldberg, S. R.; Cuomo, V.; Piomelli, D. Proc. Natl. Acad. Sci.
U.S.A. 2005, 102, 18620. (c) Bortolato, M.; Mangieri, R. A.; Fu, J.;
Kim, J. H.; Arguello, O.; Duranti, A.; Tontini, A.; Mor, M.; Tarzia, G.;
Piomelli, D. Biol. Psychiatry 2007, 62, 1103. (d) Russo, R.; LoVerme,
J.; La Rana, G.; Compton, T. R.; Parrott, J.; Duranti, A.; Tontini, A.;
Mor, M.; Tarzia, G.; Calignano, A.; Piomelli, D. J. Pharmacol. Exp.
Ther. 2007, 322, 236.
(21) Kaupp, G.; Naimi-Jamal, M. R.; Stepanenko, V. Chem.Eur. J.
2003, 9, 4156. described its use as a boronic acid protective group
during acylation reactions. Yang, W.; Gao, X.; Springsteen, G.; Wang,
B. Tetrahedron Lett. 2002, 43, 6339 employed a similar approach on
solid state with a catechol pendant resin.
(22) Hwang, K. L.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Angew. Chem.,
Int. Ed. 2005, 38, 6166. reported the use of the catechol boronic ester
of phenylboronic acid in a Pd-catalyzed arylation with tetraphenyl-
phosphonic salts as the coupling partner. Yu, D.; Yu, M.; Guan, B.; Li,
B.; Zheng, Y.; Wu, Z.; Shi, Z. Org. Lett. 2009, 15, 3374 d escribed a Ni-
catalyzed arylation of naphthyl nitriles.
(23) Cammidge, A. N.; Crep
́
y, K. V. L Chem. Commun. 2000, 1723.
Cammidge, A. N.; Crepy, K. V. L. Tetrahedron 2004, 60, 4377.
́
(24) Under the same experimental conditions, increasing the amount
of catalyst to 10% resulted in a faster and slightly cleaner reaction, with
84% of compound 7 formed after 60 min, 10% of starting material 10a
remaining unreacted, and the combined hydrolysis products 5 and 6
accounting for 6% of the reaction mixture. . The high percentage of
catalyst, however, raised the concern for possible contamination of the
final product with palladium and/or phosphine ligand. Therefore, the
optimization of the reaction conditions was performed using 5%
catalyst.
(8) Clapper, J. R.; Moreno-Sanz, G.; Russo, R.; Guijarro, A.;
Vacondio, F.; Duranti, A.; Tontini, A.; Sanchini, S.; Sciolino, N. R.;
Spradley, J. M.; Hohmann, A. G.; Calignano, A.; Mor, M.; Tarzia, G.;
Piomelli, D. Nat. Neurosci. 2010, 13, 1265.
(25) Chanthavong, F. N. E.; Leadbeater, N. E. Tetrahedron Lett.
2006, 47, 1909.
366
dx.doi.org/10.1021/op300301u | Org. Process Res. Dev. 2013, 17, 359−367