1750
W. Zhang et al. / Tetrahedron Letters 54 (2013) 1747–1750
19. Barberá, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T. Angew. Chem., Int. Ed. 1998, 37,
296–299.
20. Yang, J.; Lakshmikantham, M. V.; Cava, M. P. J. Org. Chem. 2000, 65, 6739–6742.
21. Akbulut, U.; Khurshid, A.; Haciog˘lu, B.; Toppare, L. Polymer 1990, 31, 1343–
1351.
22. Liu, C. R.; Yang, F. L.; Jin, Y. Z.; Ma, X. T.; Cheng, D. J.; Li, N.; Tian, S. K. Org. Lett.
2010, 12, 3832–3835.
23. Guo, L. N.; Duan, X. H.; Bi, H. P.; Liu, X. Y.; Liang, Y. M. J. Org. Chem. 2006, 71,
3325–3327.
coupling/cyclization reaction of benzylic alcohols and 1,3-dicar-
bonyls. For the reactions of methoxy- or methyl-substituted diaryl-
methanols with 1,3-dicarbonyls, 2 equiv of TfOH was needed to
give better results; but for the reactions of methoxy-substituted
arylethanols with 1,3-dicarbonyls, 0.6 equiv of TfOH at lower tem-
peratures was capable of promoting the reaction finished.
24. Shi, M.; Xu, B.; Huang, J. W. Org. Lett. 2004, 6, 1175–1178.
25. Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 17268–17269.
26. Shao, L. X.; Zhang, Y. P.; Qi, M. H.; Shi, M. Org. Lett. 2007, 9, 117–120.
27. Wang, J. L.; Zhang, L. X.; Jing, Y. F.; Huang, W.; Zhou, X. G. Tetrahedron Lett.
2009, 50, 4978–4982.
28. Dubé, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062–12063.
29. Coyanis, E. M.; Panayides, J. L.; Fernandes, M. A.; Koning, C. B.; Willem, A. L. J.
Organomet. Chem. 2006, 691, 5222–5239.
Acknowledgment
We are grateful to the National Nature Science Foundation of
China (Grant No. 20872056) for financial support.
Supplementary data
30. Khan, Z. A.; Wirth, T. Org. Lett. 2009, 11, 229–231.
31. Alabugin, I. V.; Kovalenko, S. V. J. Am. Chem. Soc. 2002, 124, 9052–9053.
32. Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S. D.; Jung, W. H.;
Yang, S. D.; Kim, S. J.; Woo, J. R.; Lee, J. H.; Cheon, H. G.; Kim, S. S. J. Med. Chem.
2006, 49, 4781–4784.
33. Romines, K. R.; Lovasz, K. D.; Mizsak, S. A.; Morris, K.; Seest, E. P.; Han, F.;
Tulinsky, J.; Judge, T. M.; Gammill, R. B. J. Org. Chem. 1999, 64, 1733–1737.
34. Thirupathi, P.; Kim, S. S. Tetrahedron 2010, 66, 2995–3003.
35. Huang, W.; Wang, J. L.; Shen, Q. S.; Zhou, X. G. Tetrahedron Lett. 2007, 48, 3969–
3973.
Supplementary data associated with this article can be found, in
References and notes
1. Majetich, G.; Shimkus, J. J. Nat. Prod. 2010, 73, 284–298.
2. Liang, G. X.; Xu, Y.; Seiple, I. B.; Trauner, D. J. Am. Chem. Soc. 2006, 128, 11022–
11023.
3. Wang, Y.; Mo, S. Y.; Wang, S. J.; Li, S.; Yang, Y. C.; Shi, J. G. Org. Lett. 2005, 7,
1675–1678.
4. Korte, A.; Legros, J.; Bolm, C. Synlett 2004, 13, 2397–2399.
5. Zhang, H. J.; Tan, G. T.; Santarsiero, B. D.; Mesecar, A. D.; Hung, N. V.; Cuong, N.
M.; Soejarto, D. D.; Pezzuto, J. M.; Fong, H. H. S. J. Nat. Prod. 2003, 66, 609–615.
6. Beukes, D. R.; Davies-Coleman, M. T.; Kelly-Borges, M.; Harper, M. K.; Faulkner,
D. J. J. Nat. Prod. 1998, 61, 699–701.
7. Harrowven, D. C.; Newman, N. A.; Knight, C. A. Tetrahedron Lett. 1998, 39, 6757–
6760.
8. Aknin, M.; Miralles, J.; Kornprobst, J. M.; Faure, R.; Gaydou, E. M.; Esnault, N.;
Koto, B. Y.; Clardy, J. Tetrahedron Lett. 1990, 31, 2979–2982.
9. Koike, T.; Hoashi, Y.; Takai, T.; Nakayama, M.; Yukuhiro, N.; Ishikawa, T.; Hirai,
K.; Uchikawa, O. J. Med. Chem. 2011, 54, 3436–3444.
10. Yang, L. H.; Butora, G.; Jiao, R. X.; Pasternak, A.; Zhou, C. Y.; Parsons, W. H.;
Mills, S. G.; Vicario, P. P.; Ayala, J. M.; Cascieri, M. A.; MacCoss, M. J. Med. Chem.
2007, 50, 2609–2611.
11. Clegg, N. J.; Paruthiyil, S.; Leitman, D. C.; Scanlan, T. S. J. Med. Chem. 2005, 48,
5989–6003.
12. Watanabe, N.; Ikeno, A.; Minato, H.; Nakagawa, H.; Kohayakawa, C.; Tsuji, Jun-
ichi J. Med. Chem. 2003, 46, 3961–3964.
13. Park, C. H.; Siomboing, X.; Yous, S.; Gressier, B.; Luyckx, M.; Chavatte, P. Eur. J.
Med. Chem. 2002, 37, 461–466.
14. Reich, S. H.; ohnson, T.; Wallace, J. M. B.; Kephart, S. E.; Fuhrman, S. A.;
Worland, S. T.; Matthews, D. A.; Hendrickson, T. F.; Chan, F.; Meador, J., III;
Ferre, R. A.; Brown, E. L.; DeLisle, D. M.; Patick, A. K.; Binford, S. L.; Ford, C. E. J.
Med. Chem. 2000, 43, 1670–1683.
15. Ouimet, N.; Chan, C. C.; Charleson, S.; Claveau, D.; Gordon, R.; Guay, D.; Li, C. S.;
Ouellet, M.; Percival, D. M.; Riendeau, D.; Wong, E.; Zamboni, R.; Prasit, P.
Bioorg. Med. Chem. Lett. 1999, 9, 151–156.
36. Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793–796.
37. Kurouchi, H.; Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132,
807–815.
38. Zhou, Y. H.; Qian, L. F.; Zhang, W. Synlett 2009, 5, 843–847.
39. Synthesis of 3a: A 50 mL round-bottom flask was charged with 1a (1 mmol), 2a
(1.2 mmol), anhydrous CH2Cl2 (20 mL) and a stirring bar. After the solution was
cooled to 0 °C and stirred for 10 min, CF3SO3H (2 mmol) was added portion
wise, and the reactions mixture was allowed to reach rt. The mixture was
stirred for 2 h at room temperature till 1a disappeared completely, 2 mL water
poured into the flask, and the mixture extracted with ethyl acetate
(3 ꢂ 15 mL). The combined organic layers were dried with anhydrous
Na2SO4, and concentrated in vacuo. The residue was isolated by flash column
chromatography on silica gel to give the products 3a (65%).
Compound 3a: Yellow grease; 1H NMR (400 MHz, CDCl3) d: 7.40 (d, J = 8.4 Hz,
1H), 7.24–7.16 (m, 3H), 7.06–7.04 (m, 2H), 6.87 (dd, J = 2.4, 8.4 Hz, 1H), 6.72 (d,
J = 2.4 Hz, 1H), 4.76 (d, J = 2.0 Hz, 1H), 4.13 (dt, J = 3.6, 7.2 Hz, 1H), 4.02 (dt,
J = 3.6, 7.2 Hz, 1H),3.74 (s, 3H), 2.58 (d, J = 2.0 Hz, 3H), 1.09 (t, J = 7.2 Hz, 3H)
ppm. 13C NMR (100 MHz, CDCl3) d: 165.3, 160.7, 151.9, 151.2, 139.9, 136.9,
132.7, 128.3, 127.9, 126.5, 121.9, 113.1, 109.9, 59.5, 55.7, 55.4, 14.1, 12.5 ppm.
IR (KBr): 3023, 2925, 2854, 1671, 1427, 908, 737 cmꢁ1. ESI-HRMS: m/z Calcd
for C20H20O3+H+: 309.1485. Found 309.1487.
Compound 3c: Yellow grease; 1H NMR (400 MHz, CDCl3) d: 7.64 (d, J = 7.2 Hz,
2H), 7.48 (t, J = 7.6 Hz, 1H), 7.41–7.35 (m, 3H), 7.24–7.11 (m, 2H), 7.09–7.05 (m,
2H), 6.93 (dd, J = 2.4, 8.4 Hz, 1H), 6.78 (d, J = 1.6 Hz, 1H), 5.14 (d, J = 1.6 Hz, 1H),
3.76 (s, 3H),3.10 (d, J = 2.0 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3) d: 194.4,
160.6, 151.0, 147.2, 142.8, 140.3, 138.9, 137.4, 131.9, 128.7, 128.5, 128.2, 128.0,
126.7, 122.0, 113.6, 109.8, 56.8, 55.5, 13.6 ppm. IR (KBr): 3061, 3003, 2916,
1654, 1223, 910, 133 cmꢁ1. ESI-HRMS: m/z Calcd for C24H20O2+H+: 341.1536.
Found 341.1539.
Crystal data for compound 3c (recrystallized from ethanol):
C24H20O2,
Mr = 380.25, trigonal, a = 28.7569(13) Å, b = 28.7569(13) Å, c = 11.5446(10) Å,
b = 90.00°, V = 8267.8(9) Å3, clear light yellow plate, Dc = 1.375 g cmꢁ3, T = 296
16. Cadierno, V.; Diez, J.; Pilar, G. M.; Gimeno, J.; Lastra, E. Coord. Chem. Rev. 1999,
147, 193–195.
17. Zargarian, D. Coord. Chem. Rev. 2002, 157, 233–234.
18. Leino, R.; Lehmus, P.; Lehtonen, A. Eur. J. Inorg. Chem. 2004, 16, 3201–3222.
(2) K, space group P2(1)/c, Z = 4, l
(MoKa) = 0.71073 mmꢁ1, 2hmax = 52.64, 4107
reflection collected, 2382 unique (Rinit = 0.0838) which was used in all
calculations. Final wR(F2) = 0.1381 (all data). CCDC file No. 899272.