Page 9 of 11
1
2
3
Journal of the American Chemical Society
development of near-infrared fluorescent probes for bioimaging
applications. Chem. Soc. Rev. 2014, 43 (1), 16-29.
26. Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W., Far-red to near
infrared analyte-responsive fluorescent probes based on organic
fluorophore platforms for fluorescence imaging. Chem. Soc. Rev.
2013, 42 (2), 622-661.
44. Grimm, J. B.; Brown, T. A.; Tkachuk, A. N.; Lavis, L. D., General
Synthetic Method for Si-Fluoresceins and Si-Rhodamines. ACS
Cent. Sci. 2017, 3 (9), 975-985.
45. Davis, J. H.; Szostak, J. W., Isolation of high-affinity GTP
aptamers from partially structured RNA libraries. Proc. Natl. Acad.
Sci. U. S. A. 2002, 99 (18), 11616-11621.
4
27. Umezawa, K.; Citterio, D.; Suzuki, K., New trends in near-infrared
fluorophores for bioimaging. Anal. Sci. 2014, 30 (3), 327-349.
28. Butkevich, A. N.; Mitronova, G. Y.; Sidenstein, S. C.; Klocke, J.
L.; Kamin, D.; Meineke, D. N.; D'Este, E.; Kraemer, P. T.; Danzl,
J. G.; Belov, V. N.; Hell, S. W., Fluorescent Rhodamines and
Fluorogenic Carbopyronines for Super-Resolution STED
Microscopy in Living Cells. Angew. Chem., Int. Ed. 2016, 55 (10),
3290-3294.
29. Nienhaus, K.; Nienhaus, G. U., Where Do We Stand with Super-
Resolution Optical Microscopy? J. Mol. Biol. 2016, 428 (2), 308-
322.
30. Yerramilli, V. S.; Kim, K. H., Labeling RNAs in Live Cells Using
Malachite Green Aptamer Scaffolds as Fluorescent Probes. ACS
Synth. Biol. 2018, 7 (3), 758-766.
31. Braselmann, E.; Wierzba, A. J.; Polaski, J. T.; Chrominski, M.;
Holmes, Z. E.; Hung, S. T.; Batan, D.; Wheeler, J. R.; Parker, R.;
Jimenez, R.; Gryko, D.; Batey, R. T.; Palmer, A. E., A multicolor
riboswitch-based platform for imaging of RNA in live mammalian
cells. Nat. Chem. Biol. 2018, 14 (10), 964-971.
32. Hilderbrand, S. A.; Weissleder, R., Near-infrared fluorescence:
application to in vivo molecular imaging. Curr. Opin. Chem. Biol.
2010, 14 (1), 71-79.
33. Martynov, V. I.; Pakhomov, A. A.; Popova, N. V.; Deyev, I. E.;
Petrenko, A. G., Synthetic Fluorophores for Visualizing
Biomolecules in Living Systems. Acta Naturae 2016, 8 (4), 33-46.
34. Tan, X.; Constantin, T. P.; Sloane, K. L.; Waggoner, A. S.;
Bruchez, M. P.; Armitage, B. A., Fluoromodules Consisting of a
Promiscuous RNA Aptamer and Red or Blue Fluorogenic Cyanine
Dyes: Selection, Characterization, and Bioimaging. J. Am. Chem.
Soc. 2017, 139 (26), 9001-9009.
35. Ikeno, T.; Nagano, T.; Hanaoka, K., Silicon-substituted Xanthene
Dyes and Their Unique Photophysical Properties for Fluorescent
Probes. Chem. Asian J. 2017, 12 (13), 1435-1446.
36. Kushida, Y.; Nagano, T.; Hanaoka, K., Silicon-substituted
xanthene dyes and their applications in bioimaging. Analyst 2015,
140 (3), 685-695.
37. Sun, Y. Q.; Liu, J.; Lv, X.; Liu, Y.; Zhao, Y.; Guo, W., Rhodamine-
inspired far-red to near-infrared dyes and their application as
fluorescence probes. Angew. Chem., Int. Ed. 2012, 51 (31), 7634-
7636.
38. Lukinavicius, G.; Umezawa, K.; Olivier, N.; Honigmann, A.;
Yang, G.; Plass, T.; Mueller, V.; Reymond, L.; Correa, I. R., Jr.;
Luo, Z. G.; Schultz, C.; Lemke, E. A.; Heppenstall, P.; Eggeling,
C.; Manley, S.; Johnsson, K., A near-infrared fluorophore for live-
cell super-resolution microscopy of cellular proteins. Nat. Chem.
2013, 5 (2), 132-139.
39. Wang, L.; Frei, M. S.; Salim, A.; Johnsson, K., Small-Molecule
Fluorescent Probes for Live-Cell Super-Resolution Microscopy. J.
Am. Chem. Soc. 2019, 141 (7), 2770-2781.
40. Lukinavicius, G.; Reymond, L.; Umezawa, K.; Sallin, O.; D'Este,
E.; Gottfert, F.; Ta, H.; Hell, S. W.; Urano, Y.; Johnsson, K.,
Fluorogenic Probes for Multicolor Imaging in Living Cells. J. Am.
Chem. Soc. 2016, 138 (30), 9365-9368.
41. Grimm, J. B.; Muthusamy, A. K.; Liang, Y.; Brown, T. A.; Lemon,
W. C.; Patel, R.; Lu, R.; Macklin, J. J.; Keller, P. J.; Ji, N.; Lavis,
L. D., A general method to fine-tune fluorophores for live-cell and
in vivo imaging. Nat. Methods 2017, 14 (10), 987-994.
42. Grimm, J. B.; English, B. P.; Chen, J.; Slaughter, J. P.; Zhang, Z.;
Revyakin, A.; Patel, R.; Macklin, J. J.; Normanno, D.; Singer, R.
H.; Lionnet, T.; Lavis, L. D., A general method to improve
fluorophores for live-cell and single-molecule microscopy. Nat.
Methods 2015, 12 (3), 244-250.
46. Hall, B. G., Building phylogenetic trees from molecular data with
MEGA. Mol. Biol. Evol. 2013, 30 (5), 1229-1235.
47. Jucker, F. M.; Heus, H. A.; Yip, P. F.; Moors, E. H.; Pardi, A., A
network of heterogeneous hydrogen bonds in GNRA tetraloops. J.
Mol. Biol. 1996, 264 (5), 968-980.
48. Forsdyke, D. R., A stem-loop "kissing" model for the initiation of
recombination and the origin of introns. Mol. Biol. Evol. 1995, 12
(5), 949-958.
49. Patterson, G. H.; Knobel, S. M.; Sharif, W. D.; Kain, S. R.; Piston,
D. W., Use of the green fluorescent protein and its mutants in
quantitative fluorescence microscopy. Biophys. J. 1997, 73 (5),
2782-2790.
50. Jeng, S. C.; Chan, H. H.; Booy, E. P.; McKenna, S. A.; Unrau, P.
J., Fluorophore ligand binding and complex stabilization of the
RNA Mango and RNA Spinach aptamers. RNA 2016, 22 (12),
1884-1892.
51. Grubbs, R. D., Intracellular magnesium and magnesium buffering.
Biometals 2002, 15 (3), 251-259.
52. Grimm, J. B.; Sung, A. J.; Legant, W. R.; Hulamm, P.; Matlosz, S.
M.; Betzig, E.; Lavis, L. D., Carbofluoresceins and
carborhodamines as scaffolds for high-contrast fluorogenic probes.
ACS Chem. Biol. 2013, 8 (6), 1303-1310.
53. Kolmakov, K.; Belov, V. N.; Wurm, C. A.; Harke, B.;
Leutenegger, M.; Eggeling, C.; Hell, S. W., A Versatile Route to
Red-Emitting Carbopyronine Dyes for Optical Microscopy and
Nanoscopy. Eur. J. Org. Chem. 2010, 2010 (19), 3593-3610.
54. Trachman, R. J.; Demeshkina, N. A.; Lau, M. W. L.;
Panchapakesan, S. S. S.; Jeng, S. C. Y.; Unrau, P. J.; Ferré-
D'Amaré, A. R., Structural basis for high-affinity fluorophore
binding and activation by RNA Mango. Nat. Chem. Biol. 2017, 13
(7), 807-813.
55. Lipfert, J.; Doniach, S.; Das, R.; Herschlag, D., Understanding
nucleic acid-ion interactions. Annu. Rev. Biochem. 2014, 83, 813-
841.
56. Pogliano, J.; Ho, T. Q.; Zhong, Z.; Helinski, D. R., Multicopy
plasmids are clustered and localized in Escherichia coli. Proc. Natl.
Acad. Sci. U. S. A. 2001, 98 (8), 4486-4491.
57. Zhang, J.; Fei, J.; Leslie, B. J.; Han, K. Y.; Kuhlman, T. E.; Ha, T.,
Tandem Spinach Array for mRNA Imaging in Living Bacterial
Cells. Sci. Rep. 2015, 5, 17295.
58. Tutucci, E.; Vera, M.; Biswas, J.; Garcia, J.; Parker, R.; Singer, R.
H., An improved MS2 system for accurate reporting of the mRNA
life cycle. Nat. Methods 2018, 15 (1), 81-89.
59. Lukinavicius, G.; Mitronova, G. Y.; Schnorrenberg, S.; Butkevich,
A. N.; Barthel, H.; Belov, V. N.; Hell, S. W., Fluorescent dyes and
probes for super-resolution microscopy of microtubules and
tracheoles in living cells and tissues. Chem. Sci. 2018, 9 (13), 3324-
3334.
60. Gao, P.; Prunsche, B.; Zhou, L.; Nienhaus, K.; Nienhaus, G. U.,
Background suppression in fluorescence nanoscopy with
stimulated emission double depletion. Nat. Photonics 2017, 11 (3),
163-169.
61. Fernandez-Suarez, M.; Ting, A. Y., Fluorescent probes for super-
resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 2008,
9 (12), 929-943.
62. Muller, T.; Schumann, C.; Kraegeloh, A., STED Microscopy and
its Applications: New Insights into Cellular Processes on the
Nanoscale. ChemPhysChem 2012, 13 (8), 1986-2000.
63. Nienhaus, K.; Nienhaus, G. U., Fluorescent proteins for live-cell
imaging with super-resolution. Chem. Soc. Rev. 2014, 43 (4),
1088-1106.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
64. Mito, M.; Kawaguchi, T.; Hirose, T.; Nakagawa, S., Simultaneous
multicolor detection of RNA and proteins using super-resolution
microscopy. Methods 2016, 98, 158-165.
43. Lavis, L. D., Chemistry Is Dead. Long Live Chemistry!
Biochemistry 2017, 56 (39), 5165-5170.
ACS Paragon Plus Environment