S. Hachiya et al. / Tetrahedron Letters 54 (2013) 1839–1841
1841
References and notes
1. (a) Marini, A.; Munoz-Losa, A.; Biancardi, A.; Mennucci, B. J. Phys. Chem. B 2010,
114, 17128–17135; (b) Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005,
61, 8551–8588; (c) Huang, G. J.; Ho, J. H.; Prabhakar, C.; Liu, Y. H.; Peng, S. M.;
Yang, J. S. Org. Lett. 2012, 14, 5034–5037; (d) Hu, R.; Gómez-Durán, C. F. A.; Lam,
J. W. Y.; Belmonte-Vázquez, J. L.; Deng, C.; Chen, S.; Ye, R.; Peña-Cabrera, E.;
Zhong, Y.; Wong, K. S.; Tang, B. Z. Chem. Commun. 2012, 48, 10099–10101; (e)
Kudo, K.; Momotake, A.; Tanaka, J. K.; Miwa, Y.; Arai, T. Photochem. Photobiol.
Sci. 2012, 11, 674–678; (f) Uchiyama, S.; Kimura, K.; Gota, C.; Okabe, K.;
Kawamoto, K.; Inada, N.; Yoshihara, T.; Tobita, S. Chem. Eur. J. 2012, 18, 9552–
9563; (g) Matsumoto, K.; Takahashi, N.; Suzuki, A.; Morii, T.; Saito, Y.; Saito, I.
Bioorg. Med. Chem. Lett. 2011, 21, 1275–1278; (h) Dong, J.; Solntsev, K. M.;
Tolbert, L. M. J. Am. Chem. Soc. 2006, 128, 12038–12039; (i) Okamoto, A.;
Tainaka, K.; Fujiwara, Y. J. Org. Chem. 2006, 71, 3592–3598; (j) Seo, J.; Kim, S.;
Park, S. Y. J. Am. Chem. Soc. 2004, 126, 11154–11155; (k) Cohen, B. E.;
McAnaney, T. B.; Park, E. S.; Jan, Y. N.; Boxer, S. G.; Jan, L. Y. Science 2002, 296,
1700–1703; (l) Strehmel, B.; Sarker, A. M.; Malpert, J. H.; Strehmel, V.; Seifert,
H.; Neckers, D. C. J. Am. Chem. Soc. 1999, 121, 1226–1236; (m) Niko, Y.; Konishi,
G. Tetrahedron Lett. 2011, 52, 4843–4847; (n) Niko, Y.; Konishi, G. J. Org. Chem.
2012, 77, 3986–3996; (o) Niko, Y.; Hiroshige, Y.; Kawauchi, S.; Konishi, G.
Tetrahedron 2012, 68, 6177–6185; (p) Shigeta, M.; Morita, M.; Konishi, G.
Molecules 2012, 17, 4452–4459; (q) Niko, Y.; Konishi, G. Macromolecules 2012,
45, 2327–2337; (r) Asai, K.; Konishi, G.; Sumi, K.; Kawauchi, S. Polym. Chem.
2010, 1, 321–325.
Figure 2. UV–vis absorption (solid line) and fluorescence (dashed line) spectra of
1b in various solvents. Excitation wavelength for fluorescence measurements was
absorption maxima.
2. (a) Steeger, M.; Lambert, C. Chem. Eur. J. 2012, 18, 11937–11948; (b) Riedl, J.;
Pohl, R.; Ernsting, N. P.; Orsag, P.; Fojta, M.; Hocek, M. Chem. Sci. 2012, 3, 2797–
2806; (c) Nourmohammadian, F.; Gholami, M. D. Helv. Chim. Acta 2012, 95,
1548–1555; (d) Dong, Y. M.; Bolduc, A.; McGregor, N.; Skene, W. G. Org. Lett.
2011, 13, 1844–1847; (e) Collado, D.; Casado, J.; Gonzalez, S. R.; Navarrete, J. T.
L.; Suau, R.; Perez-Inestrosa, E.; Pappenfus, T. M.; Raposo, M. M. M. Chem. Eur. J.
2011, 17, 498–507; (f) Abelt, C. J.; Sun, T.; Everett, R. K. Photochem. Photobiol.
Sci. 2011, 10, 618–622; (g) Nandy, R.; Sankararaman, S. Beilstein J. Org. Chem.
2010, 6, 992–1001; (h) Panthi, K.; Adhikari, R. M.; Kinstle, T. H. J. Phys. Chem. A
2010, 114, 4542–4549; (i) Kucherak, O. A.; Didier, P.; Mely, Y.; Klymchenko, A.
S. J. Phys. Chem. Lett. 2010, 1, 616–620; (j) Signore, G.; Nifosi, R.; Albertazzi, L.;
Storti, B.; Bizzarri, R. J. Am. Chem. Soc. 2010, 132, 1276–1288; (k) Loving, G.;
Imperiali, B. J. Am. Chem. Soc. 2008, 130, 13630–13638; (l) Palayangoda, S. S.;
Cai, X. C.; Adhikari, R. M.; Neckers, D. C. Org. Lett. 2008, 10, 281–284; (m) Yuan,
M. S.; Liu, Z. Q.; Fang, Q. J. Org. Chem. 2007, 72, 7915–7922; (n) Tainaka, K.;
Tanaka, K.; Ikeda, S.; Nishiza, K.; Unzai, T.; Fujiwara, Y.; Saito, I.; Okamoto, A. J.
Am. Chem. Soc. 2007, 129, 4776–4784; (o) Jenekhe, S. A.; Lu, L. D.; Alam, M. M.
Macromolecules 2001, 34, 7315–7324; (p) Narita, T.; Takase, M.; Nishinaga, T.;
Iyoda, M.; Kamada, K.; Ohta, K. Chem. Eur. J. 2010, 16, 12108–12113; (q) Li, Z.;
Ishizuka, H.; Sei, Y.; Akita, M.; Yoshizawa, M. Chem. Asian J. 2012, 7, 1789–1794.
3. (a) Ooyama, Y.; Kushimoto, K.; Oda, Y.; Tokita, D.; Yamaguchi, N.; Inoue, S.;
Nagano, T.; Harima, Y.; Ohshita, J. Tetrahedron 2012, 68, 8577–8580; (b) Umeda,
R.; Nishida, H.; Otono, M.; Nishiyama, Y. Tetrahedron Lett. 2011, 52, 5494–5496;
(c) Saito, Y.; Suzuki, A.; Ishioroshi, S.; Saito, I. Tetrahedron Lett. 2011, 52, 4726–
4729; (d) Lee, D. Y.; Singh, N.; Jang, D. O. Tetrahedron Lett. 2011, 52, 1368–1371;
(e) Saito, R.; Matsumura, Y.; Suzuki, S.; Okazaki, N. Tetrahedron 2010, 66, 8273–
8279; (f) Yamaguchi, I.; Seo, K.; Kawashima, Y. Tetrahedron 2010, 66, 6725–
6732; (g) Hirano, T.; Sekiguchi, T.; Hashizume, D.; Ikeda, H.; Maki, S.; Niwa, H.
Tetrahedron 2010, 66, 3842–3848; (h) Saito, Y.; Suzuki, A.; Imai, K.; Nemoto, N.;
Saito, I. Tetrahedron Lett. 2010, 51, 2606–2609; (i) Fujimoto, K.; Shimizu, H.;
Furusyo, M.; Akiyama, S.; Ishida, M.; Furukawa, U.; Yokoo, T.; Inouye, M.
Teterahedron 2009, 65, 9357–9361; (j) Batista, R. M. F.; Costa, S. P. G.; Belsley,
M.; Lodeiro, C.; Raposo, M. M. M. Teterahedron 2008, 64, 9230–9238; (k)
Takamuki, Y.; Maki, S.; Niwa, H.; Ikeda, H.; Hirano, T. Tetrahedron 2005, 61,
10073–10080; (l) Carlson, E. J.; Riel, A. M. S.; Dahl, B. J. Tetrahedron Lett. 2012,
53, 6245–6249; (m) Hagiwara, S.; Ishida, Y.; Masui, D.; Shimada, T.; Takagi, S.
Tetrahedron Lett. 2012, 53, 5800–5802.
no substituted nitronaphthalene derivatives. These results indi-
cated that the introduction of methoxy groups at the C2 position
induced internal charge transfer (ICT) character. Such solvatochro-
mic fluorescence spectra and large Stokes shift were also observed
in the case of 2b and 4b. To analyze the ICT character in further de-
tail, we investigated the correlation between the energy of the
fluorescence emission maximum, EF, and the Dimroth–Reichardt
solvent parameter ET(30), shown in Figure 3.10 A linear correlation
between EF and ET(30) was observed for 1b. This result suggested
that the solvatochromic fluorescence resulting from the donor
groups at the C2 position of 1b induced ICT. In general, the UF va-
lue of a fluorescent dye showing ICT character increases with
decreasing solvent polarity. The maximum UF of 1b (UF = 0.11)
was observed in chloroform, which is a weakly polar solvent, and
1b showed very weak fluorescence quantum yields (UF <0.01) in
other polar (acetonitrile) or non-polar (toluene) solvents. Thus,
the unique fluorescence properties of nitrophenyl-substituted
naphthalene derivatives could be explained by the solvent depen-
dence of the fluorescence quantum yield induced by the nitro-
phenyl groups and ICT character.
In conclusion, we successfully synthesized nitro-group-contain-
ing naphthalene derivatives that showed unique solvent-depen-
dent fluorescence. In particular, compound 1b showed
fluorescence with a large Stokes shift in weakly polar solvents
but no fluorescence in polar and non-polar solvents. The com-
pound showing fluorescence in weakly polar solvent only with a
large Stokes shift is remarkable, and it is expected that abovemen-
tioned compounds applied fluorophore of high resolution fluores-
cence sensor with a small signal noise ratio because of their large
Stokes shift. Our results suggested that the combination of nitro
group with linker method and donor moiety has a potential to de-
velop novel high resolution and desirable environmentally-respon-
sive fluorescence sensor6a which was a useful tool for in vivo
imaging. Further investigations of the fluorescence properties of
nitrophenyl-substituted naphthalene derivatives, in addition to
quantum chemical calculations and transient absorption studies,
are in progress.
4. (a) Gruen, H.; Görner, H. J. Phys. Chem. 1989, 93, 7144–7152; (b) Gurzadyan, G.;
Görner, H. Chem. Phys. Lett. 2000, 319, 164–172; (c) Bolduc, A.; Dong, Y.; Guérin,
A.; Skene, W. G. Phys. Chem. Chem. Phys. 2012, 14, 6946–6956.
5. (a) Neeraj, A.; Pabitra, K. N.; Periasamy, N. J. Chem. Sci. 2008, 120, 355–362; (b)
Samori, S.; Tojo, S.; Fujitsuka, M.; Spitler, E. L.; Haley, M. M.; Majima, T. J. Org.
Chem. 2007, 72, 2785–2793; (c) Plaza-Medina, E. F.; Rodríguez-Cárdoba, W.;
Morales-Cueto, R.; Peon, J. J. Phys. Chem. A 2011, 115, 577–585; (d) Flamini, R.;
Tomasi, I.; Marrocchi, A.; Calotti, B.; Spalletti, A. J. Photochem. Photobiol. A 2011,
223, 140–148; (e) Singh, A. K.; Darshi, M.; Kanvah, S. J. Phys. Chem. A 2000, 104,
464–471; (f) Megyesi, M.; Biczók, L.; Görner, H.; Miskolczy, Z. Chem. Phys. Lett.
2010, 489, 59–63; (g) Zugazagoitia, J. S.; Almora-Díaz, C. X.; Peon, J. J. Phys.
Chem. A 2008, 112, 358–365.
6. (a) Kotaka, H.; Konishi, G.; Mizuno, K. Tetrahedron Lett. 2010, 51, 181–184; (b)
Niko, Y.; Konishi, G. J. Synth. Org. Chem. Jpn. 2012, 70, 918–927.
7. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (b) Miyaura, N.;
Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513–519.
Supplementary data
8. (a) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46–49; (b) Sonogashira, K.;
Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467–4470.
9. Turro, N. J.; Ramamurthyl, V.; Scaiano, J. C. Modern Molecular Photochemistry of
Organic Molecules; University Science Books: South Orange, 2010. pp 223–230.
10. Reichardt, C. Chem. Rev. 1994, 94, 2319–2358.
Supplementary data (experimental details, 1H NMR and 13C
NMR spectra, UV–vis absorption and fluorescence spectra) associ-
ated with this article can be found, in the online version, at