LETTER
Synthesis of Ulosonic Acids
221
binosyl hemiacetal 8,19 which underwent Wittig olefina- the carbon chain. A new cyclization strategy was de-
tion, hydroxyl protection by TBS silyl ether, and scribed that was used to obtain the desired KDO pyranose
hydroboration to give arabinotitol derivative 10 in 62% isomer in good yield.
yield over three steps. The alditol was oxidized to furnish
the desired aldehyde by Swern oxidation, and followed by
conversion into alkyne 11 through Corey–Fuchs alkynyl-
Acknowledgment
We thank the National Science Council of Taiwan (NSC 101-2627-
M-009-005) and the Center for Interdisciplinary Science of NCTU
for support.
ation. Subsequent bromination and KMnO4-mediated ox-
idative cleavage of the alkyne produced the desired α-keto
ester. Final deprotection of the TBS ether function at the
C5 hydroxyl group furnished the protected α-anomer of
DAH 14 in 67% yield (from 13).5h,20 Unlike the KDO syn-
Supporting Information for this article is available online at
r
t
iornat
took place under acidic conditions (HCl in MeOH/CH2Cl2
mixture), which favored α-anomer formation. In addition,
because no acetal functions are present in 14, complica-
tions arising from migration of the acetal groups were
eliminated.
References and Notes
(1) (a) Unger, F. M. Adv. Carbohydr. Chem. Biochem. 1981, 38,
323; and references therein cited. (b) Cipolla, L.; Gabrielli,
L.; Bini, D.; Russo, L.; Shaikh, N. Nat. Prod. Rep. 2010, 27,
1618.
(2) York, W. S.; Darvill, A. G.; McNeil, M.; Albershein, P.
Carbohydr. Res. 1985, 138, 109.
(3) Corfield, A. P.; Schauer, R. Sialic Acids, Chemistry,
Metabolism and Function, In Cell Biology Monographs;
Vol. 10; Schauer, R., Ed.; Springer: Vienna, 1982, 195–261.
(4) Holst, O.; Brade, H. In Bacterial Endotoxic
O
(i) ref. 19
BnO
OH
OBn
(ii)
D-arabinose
BnO
8
OH
OTBS
OH
OBn
(
BnO
iii)
Lipopolysaccharides; Vol. 1; Morrison, D. C.; Ryan, J. L.,
Eds.; CRC: Boca Raton, 1992, 135.
BnO
H
OBn
OBn
OBn
(5) For recent syntheses of KDO and their analogues, see:
(a) Reiner, M.; Schmidt, R. R. Tetrahedron: Asymmetry
2000, 11, 319. (b) Sarabia, F.; Chammaa, S.; López Herrera,
F. J. Tetrahedron 2001, 57, 10271. (c) Barco, A.; Bassetti,
L.; Benetti, S.; Bertolasi, V.; De Risi, C.; Marchetti, P.;
Pollini, G. P. Tetrahedron 2002, 58, 8553. (d) Hekking, K.
W. F.; van Delft, F. L.; Rutjes, F. P. J. T. Tetrahedron 2003,
59, 6751. (e) Hartmann, K.; Kim, B. G.; Linker, T. Synlett
2004, 2728. (f) Kuboki, A.; Tajimi, T.; Tokuda, Y.; Kato,
D.; Sugai, T.; Ohira, S. Tetrahedron Lett. 2004, 45, 4545.
(g) Hsu, C.-C.; Hong, Z.; Wada, M.; Franke, D.; Wong, C.-
H. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9122.
(h) Hekking, K. F. W.; Moelands, M. A. H.; van Delft, F. L.;
Rutjes, F. P. J. T. J. Org. Chem. 2006, 71, 6444. (i) Tanaka,
H.; Takahashi, D.; Takahashi, T. Angew. Chem. Int. Ed.
2006, 45, 770. (j) Ichiyanagi, T.; Sakamoto, N.; Ochi, K.;
Yamasaki, R. J. Carbohydr. Chem. 2009, 28, 53. (k) Kosma,
P.; Hofinger, A.; Mueller, L. S.; Brade, H. Carbohydr. Res.
2010, 345, 704. (l) Winzar, R.; Philips, J.; Kiefel, M. J.
Synlett 2010, 583. (m) Ichiyanagi, T.; Fukunaga, M.;
Tagashira, R.; Hayashi, S.; Yamasaki, R.; Nanjo, M.
Tetrahedron 2011, 67, 5964. (n) Qian, Y.; Feng, J.; Pervez,
M.; Ling, C. C. J. Org. Chem. 2011, 77, 96. (o) Boltje, T. J.;
Zhong, W.; Park, J.; Wolfert, M. A.; Chen, W.; Boons, G. J.
J. Am. Chem. Soc. 2012, 134, 14255. For KDO glycosylation
see: (p) Yoshizaki, H.; Fukuda, N.; Sato, K.; Oikawa, M.;
Fukase, K.; Suda, Y.; Kusumoto, S. Angew. Chem. Int. Ed.
2001, 40, 1475. (q) Tanaka, H.; Takahashi, D.; Takahashi, T.
Angew. Chem. Int. Ed. 2006, 45, 770. (r) Blaukopf, M.;
Müller, B.; Hofinger, A.; Kosma, P. Eur. J. Org. Chem.
2012, 119.
9
10
OTBS
(iv)
(v)
BnO
OBn
OBn
11
O
Br
O
OTBS
(vi)
OTBS
OMe
BnO
BnO
OBn
OBn
OBn
13
OBn
12
BnO
OH
OMe
O
(vii)
ref. 5h
DAH
O
BnO
OBn
14
Scheme 4 Reagents and conditions (i) see Collam and Lowry;19 (ii)
Ph3P=CH2, THF, t-BuOK, –78 °C to r.t., 30 min, 80%; (iii) a.
TBSOTf, CH2Cl2, 2,6-lutidine, 0 °C to r.t., 10 min, 85%; b. 9-BBN,
THF, 0 °C to r.t., overnight, H2O2, 4% aq NaOH, 5 h, 92%; (iv) a.
(COCl)2, DMSO, Et3N, CH2Cl2, –78 °C, 2 h; b. CBr4, TPP, Et3N,
CH2Cl2, 0 °C, 1 h; c. EtMgBr, THF, –78 to 0 °C, 1 h, 60% over three
steps; (v) NBS, AgNO3, acetone, 0 °C to r.t., 1 h, 93%; (vi) KMnO4,
NaHCO3, MgSO4, MeOH–H2O (5:1), 0 °C, 2–3 h, 80%; (vii) 6% aq
HCl, CH2Cl2–MeOH (2:3 v/v), 0 °C to r.t., 90%; (viii) see Hekking et
al.5h TPP = triphenylphosphine; TBSOTf = tert-butyldimethylsilyl
triflate.
(6) (a) Claesson, A.; Jansson, A. M.; Pring, B. G.; Hammond, S.
M.; Ekstroem, B. J. Med. Chem. 1987, 30, 2309. (b) Adachi,
H.; Kondo, K.-I.; Kojima, F.; Umezawa, Y.; Ishino, K.;
Hotta, K.; Nishimura, Y. Nat. Prod. Res., Part B 2006, 20,
361.
In conclusion, we have developed a practical scheme for
the preparation of protected 3-deoxy-D-manno-octulo-
sonic acid (KDO) and 3-deoxy-D-arabino-2-heptulosonic
acid (DAH) from small sugar substrates. The Wittig olefi-
nation and Corey–Fuchs alkylation were used to elongate
(7) Danishefsky, S. J.; Pearson, W. H.; Segmuller, B. E. J. Am.
Chem. Soc. 1985, 107, 1280.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 219–222