Organometallics
Article
1H, ArH), 8.37 ppm (bs, 1H, ArH). 13C NMR (CDCl3, 125.77 MHz):
δ = 16.9 CH(CH3)2, 21.3 CH(CH3)2, 27.4 (CH3)CN, 53.3 OCH3,
112.4, 119.8, 122.8, 127.8, 130.0, 139.8, 141.6 (CH3)CN, 145.2,
162.2, 180.8. 119Sn NMR (CDCl3, 186.49 MHz): δ = −73.2, −330.4
ppm
ASSOCIATED CONTENT
■
S
* Supporting Information
Further details of the structure determination of compounds 1
and 4, including atomic coordinates, anisotropic displacement
parameters, and geometric data. This material is available free
Synthesis of LGeCl4 (3). GeCl4 (0.22 mL, 1.9 mmol) was added
with stirring to a solution of L (0.58 g, 1.9 mmol) in CH2Cl2 (20 mL),
at room temperature. The reaction mixture was stirred for an
additional 24 h. The suspension was filtered, and the filtrate was
concentrated to a volume of approximately 5 mL. Storage overnight at
5 °C gave a yellow solid. Yield: 0.90 g (92%). mp: 149.3−151.8 °C.
Anal. Calcd for C20H26N2OGeCl4 (MW = 534.8): C, 45.77; H, 4.99.
AUTHOR INFORMATION
■
Corresponding Author
1
Notes
Found: 45.85 C, %; 5.05 H, %. H NMR (CDCl3, 500.13 MHz): δ
The authors declare no competing financial interest.
1.26 (d, 6H, CH(CH3)2, 1.30 (d, 6H, CH(CH3)2, 2.34 (s, 3H, CH3C
N), 2.88 (septet, 2H, CH(CH3)2), 4.10 (s, 3H, OCH3), 6.97 ppm (d,
2H, ArH), 7.23−7.29 (m, 3H, ArH), 7.80 ppm (t, 1H, ArH), 8.20 ppm
(d, 2H, ArH). 13C NMR (CDCl3, 125.77 MHz): δ = 17.5 CH(CH3)2,
22.9 CH(CH3)2, 23.3 CH(CH3)2, 28.3 (CH3)CN, 53.3 OCH3,
112.6, 114.8, 122.8, 124.6, 136.6, 139.1, 145.4 (CH3)CN, 153.1,
163.1, 168.6.
ACKNOWLEDGMENTS
■
The authors wish to thank the Ministry of Education of the
Czech Republic for financial support.
REFERENCES
Synthesis of LSnBr4 (4). SnBr4 powder (1.3 g, 2.9 mmol) was
added with stirring to a solution of 1 (0.90 g, 2.9 mmol) in CH2Cl2
(20 mL), at room temperature. The reaction mixture was stirred for an
additional 24 h. The suspension was filtered, and the filtrate was
concentrated to a volume of approximately 5 mL. Storage overnight at
room temperature gave yellow crystals. Yield 1.95 g (90%). mp: 162
°C-decomp. Anal. Calcd for C20H26N2OSnBr4 (MW = 748.7): C,
■
(1) Reviews: (a) Muller, T. Adv. Organomet. Chem. 2005, 53, 155.
̈
(b) Zharov, I.; Michl, J. In The Chemistry of Organic Germanium, Tin
and Lead Compounds; Rappoport, Z., Ed.; Wiley: Chichester, U.K.,
2002; Vol. II, p 633. (c) Reed, C. A. Acc. Chem. Res. 1998, 31, 325.
(d) Yang, Y.; Panisch, R.; Bolte, M.; Muller, T. Organometallics 2008,
̈
27, 4847. (e) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.
1
(f) Panisch, R.; Bolte, M.; Muller, T. J. Am. Chem. Soc. 2006, 128,
̈
32.08; H, 3.50. Found: 32.13 C, %; 3.44 H, %. H NMR (THF-d8,
9676.
500.13 MHz): δ 1.10 (d, 6H, CH(CH3)2, 1.14 (d, 6H, CH(CH3)2, 1.73
(s, 3H, CH3CN), 2.74 (septet, 2H, CH(CH3)2), 3.58 (s, 3H,
OCH3), 6.85 ppm (d, 2H, ArH), 6.88−7.13 (m, 3H, ArH), 7.73 ppm
(t, 1H, ArH), 7.95 ppm (d, 2H, ArH). 13C NMR (THF-d8, 125.77
MHz): δ 17.8 CH(CH3)2, 23.6 CH(CH3)2, 24.1 CH(CH3)2,
29.7(CH3)CN, 53.9 OCH3, 113.4, 115.1, 124.1, 124.8, 136.8,
140.3, 148.1 (CH3)CN, 155.2, 164.9, 167.8. 119Sn NMR (THF-d8,
186.49 MHz): δ not found.
(2) (a) Jutzi, P.; Kohl, F.; Kruger, C. Angew. Chem., Int. Ed. 1979, 18,
̈
59. (b) Jutzi, P.; Kohl, F.; Hofmann, P.; Kruger, C.; Tsay, Y. H. Chem.
̈
Ber. 1980, 113, 757. (c) Hani, R.; Geanangel, R. A. J. Organomet. Chem.
1985, 293, 197. (d) Kohl, F.; Schluter, E.; Jutzi, P.; Kruger, C.;
̈
̈
Wolmershauser, G.; Hofmann, P.; Stauffert, P. Chem. Ber. 1984, 117,
̈
1178. (e) Jutzi, P.; Kohl, F.; Kruger, C.; Wolmershauser, G.; Hofmann,
P.; Stauffert, P. Angew. Chem. 1982, 94, 66. (f) Cowley, A. H.; Galow,
̈
̈
P.; Hosmane, N. S.; Jutzi, P.; Norman, N. C. J. Chem. Soc., Chem.
Crystallography. Compounds 1 and 4 were dissolved in CHCl3,
and slow diffusion of solvent produced material that was suitable for X-
ray analysis and characterized as compounds 1 and 4·CHCl3.
The X-ray data (Table S1, Supporting Information) for colorless
crystals of 1 and 4·CHCl3 were obtained at 150 K using an Oxford
Cryostream low-temperature device on a Nonius KappaCCD
diffractometer with Mo Kα radiation (λ = 0.71073 Å), a graphite
monochromator, and the ϕ and χ scan mode. Data reductions were
performed with DENZO-SMN.17 The absorption was corrected by
integration methods.18 Structures were solved by direct methods
(Sir92)19 and refined by full-matrix least-squares based on F2
(SHELXL97).20 Hydrogen atoms were mostly localized on a
difference Fourier map; however, to ensure uniformity of the
treatment of the crystal, all hydrogen atoms were recalculated into
idealized positions (riding model) and assigned temperature factors
Hiso(H) = 1.2 Ueq(pivot atom) or of 1.5Ueq for the methyl moiety with
C−H = 0.96, 0.97, and 0.93 Å for methyl, methylene, and hydrogen
atoms in aromatic rings, respectively. Only bad quality crystals of 4
were measured, giving positional disorder of the phenyl ring with low
precision of C−C bond distances and about 200 Å large solvent
accessible voids. We tried to treat these disorders and voids by
standard methods implemented in SHELXL or Platon software
packages, but these tries were unsuccessful. Crystallographic data for
structural analysis have been deposited with the Cambridge Crystallo-
graphic Data Centre. CCDC nos. 919630 and 919631 for 1 and
4·CHCl3, respectively. Copies of this information may be obtained
free of charge from The Director, CCDC, 12 Union Road, Cambridge
Commun. 1984, 1564. (g) Kohl, F. X.; Dickbreder, R.; Jutzi, P.; Muller,
̈
G.; Huber, B. Chem. Ber. 1989, 122, 871. (h) Dias, H. V. R.; Jin, W. J.
Am. Chem. Soc. 1996, 118, 9123. (i) Dias, H. V. R.; Wang, Z. J. Am.
Chem. Soc. 1997, 119, 4650. (j) Probst, T.; Steigelmann, O.; Riede, J.;
Schmidbaur, H. Angew. Chem. 1990, 102, 1471;(k) Angew. Chem., Int.
Ed. Engl. 1990, 29, 1397. (l) Beckmann, J.; Duthie, A.; Wiecko, M.
Main Group Met. Chem. 2012, 35, 179.
(3) (a) Jutzi, P.; Mix, A.; Rummel, B.; Schoeller, W. W.; Neumann,
B.; Stammler, H. G. Science 2004, 305, 849. (b) Jutzi, P.; Reumann, G.
́
J. Chem. Soc., Dalton Trans. 2000, 2237. (c) Jutzi, P.; Leszcynska, K.;
Mix, A.; Neumann, B.; Schoeller, W. W.; Stammler, H. G.
Organometallics 2009, 28, 1985. (d) Driess, M.; Yao, S.; Brym, M.;
van Wullen, C. Angew. Chem. 2006, 118, 6882;(e) Angew. Chem., Int.
̈
Ed. 2006, 45, 6730. (f) Driess, M.; Yao, S.; Brym, M.; van Wullen, C.;
̈
Lentz, D. J. Am. Chem. Soc. 2006, 128, 9628. (g) Schafer, A.; Saak, W.;
̈
Haase, D.; Muller, T. Chem.Eur. J. 2009, 15, 3945. (h) Muller, T.
̈
̈
Angew. Chem., Int. Ed. 2009, 48, 3740. (i) Stender, M.; Philips, A. D.;
Power, P. P. Inorg. Chem. 2001, 40, 5314. (j) Hino, S.; Brynda, M.;
Phillips, A. D.; Power, P. P. Angew. Chem. 2004, 116, 2709;(k) Angew.
́
Chem., Int. Ed. 2004, 43, 2655. (l) Jutzi, P.; Leszcynska, K.; Neumann,
B.; Schoeller, W. W.; Stammler, H. G. Angew. Chem., Int. Ed. 2009, 48,
2596.
(4) Hino, S.; Brynda, M.; Phillips, A. D.; Power, P. P. Angew. Chem.,
Int. Ed. 2004, 43, 2655.
(5) Li, J.; Schenk, C.; Winter, F.; Scherer, H.; Trapp, N.; Higelin, A.;
Keller, S.; Pottgen, R.; Krossing, I.; Jones, C. Angew. Chem., Int. Ed.
̈
2012, 51, 9557.
(6) Filippou, A. C.; Philippopoulos, A. I.; Schnakenburg, G.
Organometallics 2004, 23, 4503.
(7) Saur, I.; Alonso, S. G.; Gornitzka, H.; Lemierre, V.; Chrostowska,
A.; Barrau, J. Organometallics 2005, 24, 2988.
1998
dx.doi.org/10.1021/om400082t | Organometallics 2013, 32, 1995−1999