T. Aotake et al. / Tetrahedron Letters 54 (2013) 1790–1793
1793
ject in NAIST sponsored by the Ministry of Education, Culture,
Sports, Science and Technology, MEXT, Japan, and Adaptable and
Seamless Technology Transfer Program through Target-driven
R&D (A-STEP) (No. AS2111283D to S.F. and H.Y.) sponsored by Ja-
pan Science and Technology Agency.
(a)
Supplementary data
Supplementary data (synthetic detail, characterization, fluores-
cence decay curves, and spectral change of absorption and fluores-
cence during the photolysis in solution) associated with this article
(b)
References and notes
1. Anthony, J. E. Chem. Rev. 2006, 106, 5028–5048.
2. (a) Danel, K.; Huang, T.-H.; Lin, J. T.; Tao, Y.-T.; Chuen, C.-H. Chem. Mater. 2002,
14, 3860–3865; (b) Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org. Lett. 2003, 5,
4245–4248.
3. (a) Brown, A. R.; Pomp, A.; de Leeuw, D. M.; Klaassen, D. B. M.; Havinga, E. E.;
Herwig, P.; Müllen, K. J. Appl. Phys. 1996, 79, 2136–2138; (b) Herwig, P. T.;
Müllen, K. Adv. Mater. 1999, 11, 480–483.
4. (a) Afzali, A.; Dimitrakopoulos, C. D.; Breen, T. L. J. Am. Chem. Soc. 2002, 124,
8812–8813; (b) Afzali, A.; Dimitrakopoulos, C. D.; Graham, T. O. Adv. Mater.
2003, 15, 2066–2069; (c) Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers, R. J.
J. Am. Chem. Soc. 2004, 126, 12740–12741.
5. (a) Chen, K.-Y.; Hsieh, H.-H.; Wu, C.-C.; Hwang, J.-J.; Chow, T. J. Chem. Commun.
2007, 1065–1067; (b) Chuang, T.-H.; Hsieh, H.-H.; Chen, C.-K.; Wu, C.-C.; Lin,
C.-C.; Chou, P.-T.; Chao, T.-H.; Chow, T. J. Org. Lett. 2008, 10, 2869–2872; (c)
Watanabe, M.; Chang, Y. J.; Liu, S.-W.; Chao, T.-H.; Goto, K.; Islam, M. M.; Yuan,
C.-H.; Tao, Y.-T.; Shinmyozu, T.; Chow, T. J. Nat. Chem. 2012, 4, 574–578.
6. Strating, J.; Zwanenburg, B.; Wagenaar, A.; Udding, A. C. Tetrahedron Lett. 1969,
10, 125–128.
7. (a) Uno, H.; Yamashita, Y.; Kikuchi, M.; Watanabe, H.; Yamada, H.; Okujima, T.;
Ogawa, T.; Ono, N. Tetrahedron Lett. 2005, 46, 1981–1983; (b) Yamada, H.;
Yamashita, Y.; Kikuchi, M.; Watanabe, H.; Okujima, T.; Uno, H.; Ogawa, T.;
Ohara, K.; Ono, N. Chem. Eur. J. 2005, 11, 6212–6220; (c) Zhao, Y.; Mondal, R.;
Neckers, D. C. J. Org. Chem. 2008, 73, 5506–5513; (d) Katsuta, S.; Yamada, H.;
Okujima, T.; Uno, H. Tetrahedron Lett. 2010, 51, 1397–1400; (e) Tönshoff, C.;
Bettinger, H. F. Chem. Eur. J. 2012, 18, 1789–1799.
8. (a) Mondal, R.; Shah, B. K.; Neckers, D. C. J. Am. Chem. Soc. 2006, 128, 9612–
9613; (b) Mondal, R.; Adhikari, R. M.; Shah, B. K.; Neckers, D. C. Org. Lett. 2007,
9, 2505–2508; (c) Mondal, R.; Tönshoff, C.; Khon, D.; Neckers, D. C.; Bettinger,
H. F. J. Am. Chem. Soc. 2009, 131, 14281–14289; (d) Tönshoff, C.; Bettinger, H. F.
Angew. Chem., Int. Ed. 2010, 49, 4125–4128.
9. (a) Masumoto, A.; Yamashita, Y.; Go, S.; Kikuchi, T.; Yamada, H.; Okujima, T.;
Ono, N.; Uno, H. Jpn. J. Appl. Phys. 2009, 48, 051505-5; (b) Yamada, H.; Ohashi,
C.; Aotake, T.; Katsuta, S.; Honsho, Y.; Kawano, H.; Okujima, T.; Uno, H.; Ono, N.;
Seki, S.; Nakayama, K. Chem. Commun. 2012, 48, 11136–11138.
Figure 6. UV–vis absorption (solid lines) and fluorescence (dotted lines) spectra of
(a) 1b (blue) and 2b (black); and (b) 1c (blue) and 2c (black) in PMMA films
(kex = 435 nm).
The photoconversion reaction was also performed in a PMMA
film. PMMA (470 mg) was dissolved in toluene (10 mL), and the
residue was filtered off after overnight stirring. 150
lL of PMMA
solution and 50 L of CH2Cl2 solution of the precursor (5 mg/mL)
l
were mixed. The mixture was spin-coated on a glass plate and
the film was irradiated for 1 h using a 375 W metal-halide lamp
over 390 nm under vacuum. The experimental detail is described
in the Supplementary data. The UV–vis spectra before and after
photoirradiation are shown in Figure 6. Before irradiation, a typical
n–p⁄ absorption was observed at 470 nm. After irradiation, the
peaks at 435, 463, and 494 nm appeared, similar to those in tolu-
ene solution. The fluorescence of 1b in the PMMA film was also ob-
served which indicated the compound 2b was fully converted to 1b
and the obtained acene compounds are dispersed in the PMMA
film without stacking. Similar results were obtained for the photo-
conversion from 2c to 1c in PMMA film and the fluorescence quan-
tum yields of 1b and 1c were 0.33 and 0.34, respectively, in the
PMMA films.
10. Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. Nature 2002, 420, 759–
760.
11. Deniz, E.; Sortino, S.; Raymo, F. M. J. Phys. Chem. Lett. 2010, 1, 1690–1693.
12. Garden, S. J.; Torres, J.; Ferreira, A. A.; Silva, R. B.; Pinto, A. C. Tetrahedron Lett.
1997, 38, 1501–1504.
13. Heitman, L. H.; Narlawar, R.; de Vries, H.; Willemsen, M. N.; Wolfram, D.;
Brussee, J.; IJzerman, A. P. J. Med. Chem. 2009, 52, 2036–2042.
14. (a) Löhmannströben, H.-G. Appl. Phys. B 1988, 47, 195–199; (b) Burgdorff, C.;
Lircher, T.; Löhmannströben, H.-G. Spectrochim. Acta A. 1988, 44, 1137–1141;
(c) Bayrakçeron, F. J. Lumin. 1992, 54, 29; (d) Burdett, J. J.; Müller, A. M.;
Gosztola, D.; Bardeen, C. J. J. Chem. Phys. 2010, 133, 144506-1–144506-12.
15. Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bässler, H.; Porsch, M.;
Daub, J. Adv. Mater. 1995, 7, 551–554.
16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,
T., ; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas,
Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. GAUSSIAN 09 Re-Vision A.2;
GAUSSIAN: Wallingford, CT, 2009.
In conclusions, we have succeeded in preparing the highly fluo-
rescent naphthacenes 1b and 1c and their precursors 2b and 2c.
The non-fluorescent precursors can be easily converted to highly
fluorescent naphthacenes (Uf = 0.67–0.70) by photo irradiation in
solution. This conversion can also be possible in PMMA matrix.
These new materials can be applicable in the field of OLED and
memory media as printable fluorescent materials.
Acknowledgments
We thank Division of Synthesis and Analysis, Department of
Molecular Science, Integrated Center for Sciences (INCS), Ehime
University for its help in using mass and NMR spectrometer. We
also thank Venture Business Laboratory, Ehime University, for its
help in using TOF-MS. This work was partially supported by
Grants-in-Aid (No. 22350083 to H.Y.) and the Green Photonics Pro-