X. Zhang et al. / Bioorg. Med. Chem. Lett. 23 (2013) 1604–1607
1607
Cl
O
O
Et
N
Et
P1
NH
NH2
N
NH2
N
NH2
NH2
N
N
H
Cmpd
9b
15
16
360
17
1900
P1
N
H
O
FVIIa Ki (nM)
7.3
300
Figure 2. Replacement of bezamidine in compound 9b with weakly basic amines.
hydrogen bonding interactions in addition to projecting groups
for interactions within the S1, S2 and S3 pockets. Compound 9b
showed excellent FVIIa potency, good selectivity against FIXa, Xa,
XIa and chymotrypsin and good clotting activity.
Acknowledgement
We thank Ge Zhang and the Lead Evaluation department for
carrying out the in vitro enzyme assays. We would also like to
thank Steven Sheriff for helping to prepare the coordinates and
data for PDB deposition.
References and notes
1. Golino, P. Thromb. Res. 2002, 106, 257.
2. Houston, D. S. Expert Opin. Ther. Targets 2002, 6, 159.
3. Arnold, C. S.; Parker, C.; Upshaw, R.; Prydz, H.; Chand, P.; Kotian, P.; Bantia, S.;
Babu, Y. S. Thromb. Res. 2006, 117, 343.
4. Suleymanov, O. D.; Szalony, J. A.; Salyers, A. K.; Lachance, R. M.; Parlow, J. J.;
South, M. S.; Wood, R. S.; Nicholson, N. S. J. Pharmacol. Exp. Ther. 2003, 306,
1115.
5. Szalony, J. A.; Suleymanov, O. D.; Salyers, A. K.; Panzer-Knodle, S. G.; Blom, J. D.;
LaChance, R. M.; Case, B. L.; Parlow, J. J.; South, M. S.; Wood, R. S.; Nicholson, N.
S. Thromb. Res. 2004, 112, 167.
6. Szalony, J. A.; Taite, B. B.; Girard, T. J.; Nicholson, N. S.; LaChance, R. M. J.
Thromb. Thrombolysis 2002, 14, 113.
7. Zhang, X.; Schmitt, A. C.; Jiang, W.; Wasserman, Z.; Decicco, C. P. Bioorg. Med.
Chem. Lett. 2003, 13, 1157.
8. Glunz, P. W.; Douty, B. D.; Decicco, C. P. Bioorg. Med. Chem. Lett. 2003, 13, 785.
9. Tyndall, J. D. A.; Nall, T.; Fairlie, D. P. Chem. Rev. 2005, 105, 973.
10. Parlow, J. J.; Case, B. L.; Dice, T. A.; Fenton, R. L.; Hayes, M. J.; Jones, D. E.;
Neumann, W. L.; Wood, R. S.; Lachance, R. M.; Girard, T. J.; Nicholson, N. S.;
Clare, M.; Stegeman, R. A.; Stevens, A. M.; Stallings, W. C.; Kurumbail, R. G.;
South, M. S. J. Med. Chem. 2003, 46, 4050.
Figure 3. X-ray crystal structure of compound 9b bound in the active site of FVIIa.
11. South, M. S.; Case, B. L.; Wood, R. S.; Jones, D. E.; Hayes, M. J.; Girard, T. J.;
Lachance, R. M.; Nicholson, N. S.; Clare, M.; Stevens, A. M.; Stegeman, R. A.;
Stallings, W. C.; Kurumbail, R. G.; Parlow, J. J. Bioorg. Med. Chem. Lett. 2003, 13,
2319.
12. South, M. S.; Webber, R. K.; Huang, H.-c.; Toth, M. V.; Moormann, A. E.; Snyder,
J. S.; Scholten, J. A.; Garland, D. J.; Rueppel, M. L.; Neumann, W. L.; Long, S.; Wei,
H.; Trujillo, J.; Parlow, J. J.; Jones, D. E.; Case, B.; Hayes, M. J.; Zeng, Q.; Abbas, Z.;
Fenton, R. L.; Kusturin, C. L.; Hayat, R. K.; Sample, K. R.; Schweitzer, B. A.; Wood,
R. S.; Szalony, J.; Suleymanov, O. D.; Salyers, A.; Nicholson, N. S.; (Pharmacia
Corporation, USA). PCT Int. Appl. WO2003029224, 2003.
13. After this work was completed, bicyclic pyrazinone thrombine inhibitors
appeared in a patent publication. See: Nanteuil, G. D.; Gloanec, P.; Parmentier,
J.-G.; Benoist, A.; Rupin, A.; Vallez, M.-O.; Verbeuren, T. U.S. Pat. Appl. US
20050209234, 2005.
14. Ezquerra, J.; Pedregal, C.; Rubio, A.; Vaquero, J. J.; Matia, M. P.; Martin, J.; Diaz,
A.; Navio, J. L. G.; Deeter, J. B. J. Org. Chem. 1994, 59, 4327.
15. For full experimental details of the biological assays; see: Wong, P. C.; Luettgen,
J. M.; Rendina, A. R.; Kettner, C. A.; Xian, B.; Knabb, R. M.; Wexler, R. R.;
Priestley, E. R. Thromb. Haemost. 2010, 104, 261.
16. Hu, H.; Kolesnikov, A.; Riggs, J. R.; Wesson, K. E.; Stephen, R.; Leahy, E. M.;
Shrader, W. D.; Sprengeler, P. A.; Green, M. J.; Sanford, E.; Nguyen, M.; Gjerstad,
E.; Cabuslay, R.; Young, W. B. Bioorg. Med. Chem. Lett. 2006, 16, 4567.
17. Trujillo, J. I.; Huang, H.; Neumann, W. L.; Mahoney, M. W.; Long, S.; Huang, W.;
Garland, D. J.; Kusturin, C.; Abbas, Z.; South, M. S.; Reitz, D. B. Bioorg. Med. Chem.
Lett. 2007, 17, 4568.
18. Miura, M.; Seki, N.; Koike, T.; Ishihara, T.; Niimi, T.; Hirayama, F.; Shigenaga, T.;
Sakai-Moritani, Y.; Tagawa, A.; Kawasaki, T.; Sakamoto, S.; Okada, M.; Ohta, M.;
Tsukamoto, S. Bioorg. Med. Chem. 2007, 15, 160.
19. Banner, D. W.; D’Acry, A.; Chene, C.; Winker, F. K.; Guha, A.; Konigsberg, W. H.;
Nemserson, Y.; Kirchhofer, D. Nature 1996, 380, 41.
3-aminobenzoisoxazole (17) all resulted in significant loss (40–260-
fold) of potency. One of the major challenges in the development of
drugs inhibiting TF–VIIa is attaining oral bioavalability. Only limited
reports of non-benzamidine TF–FVIIa inhibitors have recently ap-
peared in literature.16–18
An X-ray crystal structure of compound 9b bound to FVIIa was
solved (Fig. 3) to better understand how these bicyclic pyrazinone
amides bind in the active site of the enzyme.20 As we anticipated,
besides the key salt bridge interactions of the benzamidine with
Asp189 in the bottom of the S1 pocket, the pyrazinone scaffold
provided three additional key hydrogen bond interactions with
the enzyme backbone: a pair from the pyrazinone carbonyl and
terminal NH to interact with Gly216, and the amide NH to interact
with Ser214 hydroxyl. The R2-ethyl group engages in a hydropho-
bic interaction with the side chain methyl of Thr99 in the S2 pocket
while R1 group is solvent exposed. This R2-ethyl group also dis-
places a structural water molecule from the S2 pocket that is often
seen in other TF–FVIIa/inhibitor crystal structures.19 The cyclobu-
tyl group attached to the terminal nitrogen makes hydrophobic
interactions with Pro170I.
In summary, we have designed and synthesized bicyclic pyraz-
inone and pyrimidinone amides as potent TF–FVIIa inhibitors. SAR
shows that the S2 and S3 pocket of the enzyme prefer to bind
small, lipophilic groups. The bicyclic scaffolds provide three
20. PDB deposition number is 4ISI.