X-ray Structural Analysis of Compound 2. Single crystals of compound 2 (C19H21ClN2O7S,
M 456.91) were prepared by crystallization from EtOH and have trigonal symmetry. The unit cell parameters
were: a 7.8845(4), b 10.4197(5), c 12.6602(5) Å, 89.489(3), 82.023(3), 87.266(2)º, V 1028.87(8) Å3, F(000)
–
476; 0.33 mm-1, dcalc 1.475 gcm-3; Z 2, space group P1. The intensities of 5032 independent reflections were
measured on a Bruker Nonius KappaCCD diffractometer (MoK radiation, 0.71073 Å, graphite
monochromator) to 2max 57º at -80ºC. Reflections (3253) with I >3(I) were used in the calculation. The final
probability factor R was 0.047. The structure was solved using the DIRDIF program. Refinement was carried
out by least squares analysis in the full-matrix anisotropic approximation. The maXus program package [22]
was used for the calculation. The full crystallographic information for compound 2 has been placed in the
Cambridge Crystallographic Data Center as deposit CCDC 860565.
This work was carried out with the financial support of the European Regional Development Fund
(ERDF) within the project No. 2010/0227/2DP/2.1.1.1.0/10/APIA/VIAA/072.
REFERENCES
1.
2.
3.
4.
I. E. Kirule, A. A. Krauze, A. Kh. Velena, D. Yu. Antipova, G. Ya. Arnitsane, I. A. Vutsina and
G. Ya. Dubur, Khim-Farm. Zh., 26, No. 11/12, 59 (1992).
M. A. Fernandes, M. S. Santos, A. J. M. Moreno, L. Chernova, A. Krauze, G. Duburs, and
J. A. F. Vicente, Toxicol. In Vitro, 23, 1333 (2009).
D. Tirzite, A. Krauze, A. Zubareva, G. Tirzitis, and G. Duburs, Khim. Geterotsikl. Soedin., 902 (2002).
[Chem. Heterocycl. Compd., 38, 795 (2002)].
A. A. Krauze, A. G. Odinets, A. A. Verreva, S. K. Germane, A. N. Kozhukhov, and G. Ya. Dubur,
Khim-Farm. Zh., 25, No. 7, 40 (1991).
5.
6.
A. A. Krauze, R. O. Vitolinya, M. R. Romanova, and G. Ya. Dubur, Khim-Farm. Zh., 22, 955 (1988).
A. A. Krauze, J. E. Pelcher, R. O. Vitolina, M. J. Selga, I. O. Petersone, Z. A. Kalme, A. A. Kimenis,
and G. J. Dubur, WO Pat. Appl. 8803529.
7.
8.
R. J. Bulger, M. D. Kirby, and M. M. William, Am. J. Med. Sci., 246, 717 (1963).
M. A. Totir, M. S. Helfand, M. P. Carey, A. Sheri, J. D. Buynak, R. A. Bonomo, and P. R. Carey,
Biochemistry, 46, 8980 (2007).
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
G. W. Mushrush, E. J. Beal, D. R. Hardy, R. N. Hazlett, and D. G. Mose, Fuel, 73, 1481 (1994).
A. K. Mohanakrishnan and N. Ramesh, Tetrahedron Lett., 46, 4231 (2005).
V. Prasad and P. Newallis, US Pat. Appl. 6437189.
A. McKillop and J. A. Tarbin, Tetrahedron, 43, 1753 (1987).
K. K. Banerji, Tetrahedron, 44, 2969 (1988).
B. M. Trost and D. P. Curran, Tetrahedron Lett., 22, 1287 (1981).
K. Jeyakumar and D. K. Chand, Tetrahedron Lett., 47, 4573 (2006).
A. R. Supale and G. S. Gokavi, Catal. Lett., 124, 284 (2008).
Y. Yamanoi and T. Imamoto, J. Org. Chem., 62, 8560 (1997).
A. Ghorbani-Choghamarani and J. Zeinivand, J. Iran. Chem. Soc., 7, 190 (2010).
R. Lavilla, X. Barón, O. Coll, F. Gullón, C. Masdeu, and J. Bosch, J. Org. Chem., 63, 10001 (1998).
G. Gilli in: C. Giacovazzo (editor), Fundamentals of Crystallography, 2nd Ed., Oxford Science
Publications, Oxford (2002), p. 590.
21.
22.
A. Krauze, L. Chernova, M. Vilums, L. Sile, and G. Duburs, Heterocycl. Commun., 12, 281 (2006).
S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, and K. Shankland, MaXus, Computer Program for
the Solution and Refinement of Crystal Structures, Bruker Nonius, The Netherlands, MacScience, Japan
& The University of Glasgow, Scotland (1999).
1486