ChemComm
Communication
We would like to thank UCB and the BBSRC for funding and
Drs R. Alexander and J. Porter for helpful discussions. BGD is a
Royal Society Wolfson Research Merit Award recipient.
Notes and references
1 R. K. Upreti, M. Kumar and V. Shankar, Proteomics, 2003, 3, 363–379.
2 M. F. Mescher, J. L. Strominger and S. W. Watson, J. Bacteriol., 1974,
120, 945–954.
3 M. Wacker, D. Linton, P. G. Hitchen, M. Nita-Lazar, S. M. Haslam,
S. J. North, M. Panico, H. R. Morris, A. Dell, B. W. Wren and M. Aebi,
Science, 2002, 298, 1790–1793.
4 N. M. Young, J.-R. Brisson, J. Kelly, D. C. Watson, L. Tessier,
P. H. Lanthier, H. C. Jarrell, N. Cadotte, F. St. Michael, E. Aberg
and C. M. Szymanski, J. Biol. Chem., 2002, 277, 42530–42539.
5 C. M. Szymanski and B. W. Wren, Nat. Rev. Microbiol., 2005, 3,
225–237.
6 E. Weerapana and B. Imperiali, Glycobiology, 2006, 16, 91R–101R.
7 B. G. Davis, Chem. Rev., 2002, 102, 579–602.
8 D. P. Gamblin, E. M. Scanlan and B. G. Davis, Chem. Rev., 2009, 109,
131–163.
9 J. M. Chalker, G. J. L. Bernardes and B. G. Davis, Acc. Chem. Res.,
2011, 44, 730–741.
10 J. M. Chalker, C. S. C. Wood and B. G. Davis, J. Am. Chem. Soc., 2009,
131, 16346–16347.
11 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457–2483.
12 C. D. Spicer and B. G. Davis, Chem. Commun., 2011, 47, 1698–1700.
13 N. Li, R. K. V. Lim, S. Edwardraja and Q. Lin, J. Am. Chem. Soc., 2011,
133, 15316–15319.
14 Y.-S. Wang, W. K. Russell, Z. Wang, W. Wan, L. E. Dodd, P.-J. Pai,
D. H. Russell and W. R. Liu, Mol. BioSyst., 2011, 7, 714–717.
15 J. Xie, L. Wang, N. Wu, A. Brock, G. Spraggon and P. G. Schultz, Nat.
Biotechnol., 2004, 22, 1297–1301.
Fig. 2 Interaction of fluorescein–lectin conjugates with E. coli labelled with
monosaccharide boronic acids via Suzuki–Miyaura coupling.
16 J. W. Chin, T. A. Cropp, J. C. Anderson, M. Mukherji, Z. Zhang and
P. G. Schultz, Science, 2003, 301, 964–967.
17 T. S. Young, I. Ahmad, J. A. Yin and P. G. Schultz, J. Mol. Biol., 2010,
395, 361–374.
specificity for LCA (Fig. 2 top). Glc modification of the cell
surfaces resulted in no interaction with either of these proteins.
Experiments run in the absence of the key coupling partners 18 C. D. Spicer, T. Triemer and B. G. Davis, J. Am. Chem. Soc., 2012, 134,
800–803.
(palladium, boronic acid or in cells grown in the absence of
pIPhe) also failed to result in any binding, strongly supporting a
19 I. R. Rodriguez and W. J. Whelan, Biochem. Biophys. Res. Commun.,
1985, 132, 829–836.
Suzuki–Miyaura-induced switching mechanism (see ESI†). Nota- 20 B. C. O’Connell and L. A. Tabak, J. Dent. Res., 1993, 72, 1554–1558.
21 A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley,
bly, the existing, natural E. coli glycocalyx was not disrupted during
the course of the reaction, allowing the inherent interaction with
C. R. Bertozzi, G. W. Hart and M. E. Etzler, Essentials of Glycobiology,
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2nd edn,
ConA to be maintained in all cases (Fig. 2 bottom). In addition to
confirming Suzuki–Miyaura glycoconjugations at bacterial cell
surfaces, these results also demonstrated the accessibility and
potential applicability of these biologically relevant ligands for
future applications.
2009.
22 W. S. Hu and A.-P. Zeng, Genomics and Systems Biology of Mammalian
Cell Culture, Springer, 2012.
23 T. Ishiyama, M. Murata and N. Miyaura, J. Org. Chem., 1995, 60,
7508–7510.
24 H. C. Brown, D. Basavaiah, S. U. Kulkarni, H. D. Lee, E. Negishi and
J. J. Katz, J. Org. Chem., 1986, 51, 5270–5276.
25 H. B. Mereyala and S. R. Gurrala, Carbohydr. Res., 1998, 307, 351–354.
In conclusion, we have synthesised a series of novel carbo-
hydrate based boronic acids, and applied these as cross- 26 H. C. Brown and S. K. Gupta, J. Am. Chem. Soc., 1972, 94, 4370–4371.
27 H. C. Brown and J. B. Campbell, J. Org. Chem., 1980, 45, 389–395.
28 H. C. Brown, A. K. Mandal and S. U. Kulkarni, J. Org. Chem., 1977,
coupling partners for the Suzuki–Miyaura labelling of pIPhe
‘tagged’ cells. The cognate interactions of these biologically
42, 1392–1398.
relevant ligands could be visualised on the cell surface via the 29 P. Martinez-Fresneda and M. Vaultier, Tetrahedron Lett., 1989, 30,
2929–2932.
selective binding of fluorescein–lectin conjugates, thus demon-
strating the functionality of such ligands in a complex and
30 Y. D. Wang, G. Kimball, A. S. Prashad and Y. Wang, Tetrahedron
Lett., 2005, 46, 8777–8780.
relevant biological context. Importantly, we have also demon- 31 T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba,
strated18 low associated toxicity. The use of such couplings
further demonstrates the power of Pd-mediated control of
K. A. Datsenko, M. Tomita, B. L. Wanner and H. Mori, Mol. Syst.
Biol., 2006, 2, 2006.0008.
32 A. Foriers, E. Lebrun, R. Van Rapenbusch, R. de Neve and
A. D. Strosberg, J. Biol. Chem., 1981, 256, 5550–5560.
33 L. A. Murphy and I. J. Goldstein, J. Biol. Chem., 1977, 252,
4739–4742.
34 T. G. Pistole, Annu. Rev. Microbiol., 1981, 35, 85–112.
35 J. Li and P. R. Chen, ChemBioChem, 2012, 13, 1728–1731.
Biology,35 here in cellular interactions. We are currently work-
ing towards utilising such methods in eukaryotic systems,
particularly in the potential blood typing (‘blood groups’) of
mammalian samples.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 2747--2749 2749