942
M. Tao et al. / Bioorg. Med. Chem. Lett. 16 (2006) 938–942
C. Curr. Med. Chem. 2003, 10, 321; (c) Hattori, K.;
Kido, Y.; Yamamoto, H.; Ishida, J.; Kamijo, K.;
Murano, K.; Ohkubo, M.; Kinoshita, T.; Iwashita, A.;
Mihara, K.; Yamazaki, S.; Matsuoka, N.; Teramura, Y.;
Miyake, H. J. Med. Chem. 2004, 47, 4151; (d) Jagtap, P.
G.; Southan, G. J.; Baloglu, E.; Ram, S.; Mabley, J. G.;
Marton, A.; Salzman, A.; Szabo, C. Bioorg. Med. Chem.
Lett. 2004, 14, 81; (e) Ferraris, D.; Ko, Y.; Pahutski, T.;
Ficco, R. P.; Serdyuk, L.; Alemu, C.; Bradford, C.;
Chiou, T.; Hoover, R.; Huang, S.; Lautar, S.; Liang, S.;
Lin, Q.; Lu, M. X.-C.; Mooney, M.; Morgan, L.; Qian,
Y.; Tran, S.; Williams, L. R.; Wu, Q. Y.; Zhang, J.; Zou,
Y.; Kalish, V. J. Med. Chem. 2003, 46, 3138.
is required for potency and fits into a steric pocket with
the enzyme. Expanding, deleting, or opening the cyclo-
pentyl ring led to weak or inactive inhibitors. The indole
NH is required and forms a significant H-bond with
PARP-1 as the benzofuran and benzothiophene analogs
were inactive. The truncated pyrrole imide 14 was found
to be equipotent to 1, indicating that the B-ring is not
required. The des-aryl compound 14, with a lower
molecular weight, would be anticipated to have im-
proved physical chemical properties and represents a
novel small molecule PARP-1 scaffold.
5. (a) Ruf, A.; de Murcia, G.; Schulz, G. E. Biochemistry
1998, 37, 3893; (b) White, A. W.; Almassy, R.; Calvert, A.
H.; Curtin, N. J.; Griffin, R. J.; Hostomsky, Z.; Maegley,
K.; Newell, D. R.; Srinivasan, S.; Golding, B. T. J. Med.
Chem. 2000, 43, 4084; (c) Costantino, G.; Macchiarulo,
A.; Camaioni, E.; Pellicciari, R. J. Med. Chem. 2001, 44,
3786; (d) Koch, S. S. C.; Thoresen, L. H.; Tikhe, J. G.;
Maegley, K. A.; Almassy, R. J.; Li, J.; Yu, X.; Zook, S.
E.; Kumpf, R. A.; Zhang, C.; Boritzki, T. J.; Mansour, R.
N.; Zhang, K. E.; Ekker, A.; Calabrese, C. R.; Curtin, N.
J.; Kyle, S.; Thomas, H. D.; Wang, L.; Calvert, A. H.;
Golding, B. T.; Griffin, R. J.; Newell, D. R.; Webber, S.
E.; Hostomsky, Z. J. Med. Chem. 2002, 45, 4961; (e)
Ferraris, D.; Ficco, R. P.; Dain, D.; Ginski, M.; Lautar,
S.; Lee-Wisdom, K.; Liang, S.; Lin, Q.; Lu, M. X.-C.;
Morgan, L.; Thomas, B.; Williams, L. R.; Zhang, J.;
Zhou, Y.; Kalish, V. J. Bioorg. Med. Chem. 2003, 11,
3695.
Acknowledgments
The authors acknowledge the support of and discussions
with Drs. John Mallamo, Ed Bacon, and Jeffry Vaught.
References and notes
1. (a) Alvarez-Gonzalez, R.; Pacheco-Rodriquez, G.; Mando-
za-Alvarez, H. Mol. Cell. Biochem. 1994, 138, 33; (b) Yu,
S.-W.; Wang, H.; Poitras, M. F.; Coombs, C.; Browers, W.
J.; Federoff, H. J.; Poirier, G. G.; Dawson, T. M.; Dawson,
V. L. Science 2002, 297, 259; (c) Bryant, H. E.; Schultz, N.;
Thomas, H. D.; Parker, K. M.; Flower, D.; Lopez, E.;
Kyle, S.; Meuth, M.; Curtin, N. J.; Helleday, T. Nature
2005, 434, 913; (d) Farmer, H.; McCabe, N.; Lord, C. L.;
Tutt, A. N. J.; Johnson, D. A.; Richardson, T. B.;
Santarosa, M.; Dillon, K. J.; Hickson, I.; Knights, C.;
Martin, N. M.; Jackson, S. P.; Smith, G. C. M.; Ashworth,
A. Nature 2005, 424, 917.
6. Ator, M. A.; Bihovsky, R.; Chatterjee, S.; Dunn, D.;
Hudkins, R. L. W.O. Patent 01/85686 A2, 2001.
7. Eitel, M.; Pindur, U. Synthesis 1989, 364.
8. Noland, W. E.; Lee, C. K.; Bae, S. K.; Chung, B. Y.; Hahn,
C. S.; Kim, K. J. J. Org. Chem. 1983, 48, 2488.
2. Ruf, A.; Menissier de Murcia, J.; de Muricia, G. M.;
Schulz, G. E. Proc. Nat. Acad. Sci. U.S.A. 1996, 93, 7481.
9. PARP-1 inhibition assay: PC12 cells were plated onto
polyornithine/laminin-coated 96-well plates. Prior to
addition of inhibitors, growth medium was replaced
with low serum medium. Cells were pre-treated for 1 h
with PARP inhibitors and then with 0.5 mM hydrogen
peroxide for 30 min in the presence of inhibitors. After
washing away the peroxide, fresh PARP inhibitors were
added. One hour after peroxide treatment the cell
surface was washed once with phosphate-buffered saline.
NAD+ was released into phosphate-buffered saline by
subjecting the cells to two freeze/thaw cycles. After
centrifugation, the supernatant was analyzed for NAD+
using the method described in Shah, G. M.; Poirier, D.;
Duchaine, C.; Brochu, G.; Desnoyers, S.; Lagueux, J.;
Verreault, A.; Hoflack, J. C.; Kirkland, J. B.; Poirier, G.
G. Anal. Biochem. 1995, 227, 1.
´
´
3. (a) Virag, L.; Szabo, C. Pharmacol. Rev. 2002, 54, 375; (b)
Skaper, S. D. Curr. Drug Targets CNS Neurol. Disord. 2003,
2, 279; (c) Endres, M.; Wang, Z. Q.; Namura, S.; Waeber, C.;
Moskowitz, M. A. J. Cereb. Blood Flow Metab. 1997, 17,
1143; (d) Takahashi, K.; Pieper, A. A.; Croul, S. E.; Zhang,
J.; Synder, S. H.; Greenberg, J. H. Brain Res. 1999, 829, 46;
(e) Nagayama, T.; Simon, R. P.; Chen, D.; Henshall, D. C.;
Pei, W.; Stetler, R. A.; Chen, J. J. Neurochem. 2000, 74, 1636;
(f) Shall, S. Mol. Cell. Biochem. 1994, 138, 71; (g) Satoh, M.
S.; Lindahl, T. Nature (London) 1992, 356, 356; (h)
Miknyoczki, S. J.; Jones-Bolin, S.; Pritchard, S.; Hunter,
K.; Zhao, H.; Wan, W.; Ator, M.; Bihovsky, R.; Hudkins, R.;
Chatterjee, S.; Klein-Szanto, A.; Dionne, C.; Ruggeri, B.
Mol. Cancer Ther. 2003, 2, 371.
4. (a) Banasik, M.; Komura, H.; Shimiyama, M.; Ueda, K.
´
J. Biol. Chem. 1992, 267, 1569; (b) Southan, G. J.; Szabo,