1764
M. Shigeta et al. / Tetrahedron Letters 54 (2013) 1761–1764
7. (a) Denmark, S. E.; Tymonko, S. A. J. Org. Chem. 2003, 68, 9151–9154; (b) Wu,
References and notes
M.-J.; Wei, L.-M.; Lin, C.-F.; Leou, S.-P.; Wei, L.-L. Tetrahedron 2001, 57, 7839–
7844; (c) Halbes, U.; Pale, P. Tetrahedron Lett. 2002, 43, 2039–2042; (d) Mio, M.
J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.;
Markworth, C. J.; Grieco, P. A. Org. Lett. 2002, 4, 3199–3202; (e) Severin, R.;
Reimer, J.; Doye, S. J. Org. Chem. 2010, 75, 3518–3521.
1. (a) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46–49; (b) Sonogashira, K.;
Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467–4470; (c) Takahashi, S.;
Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627–630; (d)
Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084–5121; (e) Chinchilla, R.;
Najera, C. Chem. Rev. 2007, 107, 874–922.
8. (a) Denmark, S. E.; Wehrli, D. Org. Lett. 2000, 2, 565–568; (b) Chang, S.; Yang, S.
H.; Lee, P. H. Tetrahedron Lett. 2001, 42, 4833–4835; (c) Bertus, P.; Halbes, U.;
Pale, P. Eur. J. Org. Chem. 2001, 4391–4393; (d) Halbes, U.; Bertus, P.; Pale, P.
Tetrahedron Lett. 2001, 42, 8641–8644; (e) Merkul, E.; Urselmann, D.; Müller, T.
J. J. Eur. J. Org. Chem. 2011, 238–242.
9. (a) Mihalcik, D. J.; Zhang, T.; Ma, L.; Lin, W. Inorg. Chem. 2012, 51, 2503–2508;
(b) Mann, J. A.; Rodríguez-López, J.; Abruña, H. D.; Dichtel, W. R. J. Am. Chem.
Soc. 2011, 133, 17614–17617; (c) Weibel, N.; Mishchenko, A.; Wandlowski, T.;
Neuburger, M.; Leroux, Y.; Mayor, M. Eur. J. Org. Chem. 2009, 6140–6150.
10. (a) Chang, J. W. W.; Mak, S.; Chee, S.; Buranaprasertsuk, P.; Chavasiri, W.; Chan,
P. W. H. Tetrahedron Lett. 2008, 49, 2018–2022; (b) Ito, H.; Sensui, H.; Arimoto,
K.; Miura, K.; Hosomi, A. Chem. Lett. 1997, 26, 639–640; For reviews, see: (c)
Sawyer, J. S. Tetrahedron 2000, 56, 5045–5065; (d) Ley, S. V.; Thomas, A. W.
Angew. Chem., Int. Ed. 2003, 42, 5400–5449.
11. (a) Barton, T. J.; Groh, B. L. J. Org. Chem. 1985, 50, 158–166; (b) Buckle, D. R.;
Rockell, C. J. M. J. Chem. Soc., Perkin Trans. 1 1985, 2443–2446; (c) Arcadi, A.;
Cacchi, S.; Rosario, M. D.; Fabrizi, G.; Marinelli, F. J. Org. Chem. 1996, 61, 9280–
9288; (d) Nakamura, M.; Ilies, L.; Otsubo, S.; Nakamura, E. Org. Lett. 2006, 8,
2803–2805; (e) Fiandanese, V.; Bottalico, D.; Marchese, G.; Punzi, A.
Tetrahedron 2008, 64, 53–60; (f) Kálai, T.; Schindler, J.; Balog, M.; Fogassy, E.;
Hideg, K. Tetrahedron 2008, 64, 1094–1100; (g) Fiandanese, V.; Bottalico, D.;
Marchese, G.; Punzi, A. Tetrahedron 2008, 64, 7301–7306; (h) Tsuji, H.; Mitsui,
C.; Ilies, L.; Sato, Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 11902–11903; (i)
Mitsui, C.; Soeda, J.; Miwa, K.; Tsuji, H.; Takeya, J.; Nakamura, E. J. Am. Chem.
Soc. 2012, 134, 5448–5451; (j) Tsuji, H.; Mitsui, C.; Sato, Y.; Nakamura, E. Adv.
Mater. 2009, 21, 3776–3779.
2. (a) Bunz, U. H. F. Chem. Rev. 2000, 100, 1605–1644; (b) Kim, J.; Swager, T. M.
Nature 2001, 411, 1030–1034; (c) Langhals, H.; Esterbauer, A. J.; Walter, A.;
Riedle, E.; Pugliesi, I. J. Am. Chem. Soc. 2010, 132, 16777–16782; (d) Jana, D.;
Ghorai, B. K. Tetrahedron Lett. 2012, 53, 196–199; (e) Fukumoto, H.; Yamane, K.;
Kase, Y.; Yamamoto, T. Macromolecules 2010, 43, 10366–10375; (f) Wang, C.;
Pålsson, L.; Batsanov, A. S.; Bryce, M. R. J. Am. Chem. Soc. 2006, 128, 3789–3799;
(g) Doi, Y.; Chiba, J.; Morikawa, T.; Inouye, M. J. Am. Chem. Soc. 2008, 130, 8762–
8768; (h) Abe, H.; Masuda, N.; Waki, M.; Inouye, M. J. Am. Chem. Soc. 2005, 127,
16189–16196; (i) Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K.; Shimizu, H.;
Inouye, M. Chem. Eur. J. 2006, 12, 824–831; (j) Ulrich, G.; Ziessel, R. Synlett 2004,
439–444; (k) Arakawa, Y.; Nakajima, S.; Ishige, R.; Uchimura, M.; Kang, S.;
Konishi, G.; Watanabe, J. J. Mater. Chem. 2012, 22, 8394–8398; (l) Arakawa, Y.;
Nakajima, S.; Kang, S.; Shigeta, M.; Konishi, G.; Watanabe, J. J. Mater. Chem.
2012, 22, 13908–13910; (m) Arakawa, Y.; Nakajima, S.; Kang, S.; Konishi, G.;
Watanabe, J. J. Mater. Chem. 2012, 22, 14346–14348; (n) Asai, K.; Konishi, G.;
Nakajima, Y.; Kawauchi, S.; Ozawa, F.; Mizuno, K. J. Organomet. Chem. 2011,
696, 1266–1271; (o) Uchimura, M.; Kang, S.; Ishige, R.; Watanabe, J.; Konishi, G.
Chem. Lett. 2010, 39, 513–515; (p) Arakawa, Y.; Nakajima, S.; Kang, S.; Shigeta,
M.; Watanabe, J.; Konishi, G. Liq. Cryst. 2012, 39, 1063–1069; (q) Yamaji, M.;
Maeda, H.; Minamida, K.; Maeda, T.; Asai, K.; Konishi, G.; Mizuno, K. Res. Chem.
Intermed. 2013, 39, 321–345.
3. (a) Takiguchi, H.; Ohmori, K.; Suzuki, K. Chem. Lett. 2011, 40, 1069–1071; (b)
Nakajima, R.; Ogino, T.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2010, 132,
1236–1327; (c) Nicolaou, K. C.; Peng, X. S.; Sun, Y. P.; Polet, D.; Zou, B.; Lim, C.
S.; Chen, D. Y. K. J. Am. Chem. Soc. 2009, 131, 10587–10597; (d) Miyazaki, T.;
Yokoshirna, S.; Simizu, S.; Osada, H.; Tokuyama, H.; Fukuyama, T. Org. Lett.
2007, 9, 4737–4740; (e) Suzuki, M.; Kambe, M.; Tokuyama, H.; Fukuyama, T. J.
Org. Chem. 2004, 69, 2831–2843; (f) Ohyabu, N.; Nishikawa, T.; Isobe, M. J. Am.
Chem. Soc. 2003, 125, 8798–8805; (g) Sasaki, T.; Inoue, M.; Hirama, M.
Tetrahedron Lett. 2001, 42, 5299–5303; (h) Tatsuta, K.; Takano, S.; Sato, T.;
Nakano, S. Chem. Lett. 2001, 172–173.
12. Kitazawa, T.; Minowa, T.; Mukaiyama, T. Chem. Lett. 2006, 35, 1002–1003.
13. Shigeta, M.; Watanabe, J.; Konishi, G. Asian J. Org. Chem. 2012, 1, 43–46.
14. Desilylation rate might be related to their pKa. Aryl proton (ꢀ43) is much
higher than alkynyl proton (ꢀ23).
15. By 4-bromophenol in the same condition, Glaser coupling was proceeded.
4. (a) Ahmed, M. S. M.; Mori, A. Org. Lett. 2003, 5, 3057–3060; (b) Mori, A.; Ahmed,
M. S. M.; Sekiguchi, A.; Masui, K.; Koike, T. Chem. Lett. 2002, 756–757; (c)
Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4,
1691–1694; (d) Mori, A.; Shimada, T.; Kondo, T.; Sekiguchi, A. Synlett 2001,
649–651; (e) Mori, A.; Kawashima, J.; Shimada, T.; Suguro, M.; Hirabayashi, K.;
Nishihara, Y. Org. Lett. 2000, 2, 2935–2937.
5. (a) Akita, Y.; Kanekawa, H.; Kawasaki, T.; Shiratori, I.; Ohta, A. J. Heterocycl.
Chem. 1988, 25, 975–977; (b) Hatanaka, Y.; Matsui, K.; Hiyama, T. Tetrahedron
Lett. 1989, 30, 2403–2406; (c) Nishihara, Y.; Ikegashira, K.; Mori, A.; Hiyama, T.
Chem. Lett. 1997, 26, 1233–1234; (d) Nishihara, Y.; Ikegashira, K.; Hirabayashi,
K.; Ando, J.; Mori, A.; Hiyama, T. J. Org. Chem. 2000, 65, 1780–1787; (e) Ito, H.;
Arimoto, K.; Sensul, H.; Hosomi, A. Tetrahedron Lett. 1997, 38, 3977–3980; (f)
Koseki, Y.; Omino, K.; Anzai, S.; Nagasaka, T. Tetrahedron Lett. 2000, 41, 2377–
2380; (g) Marshall, J. A.; Chobanian, H. R.; Yanik, M. M. Org. Lett. 2001, 3, 4107–
4110; (h) Yang, C.; Nolan, S. P. Organometallics 2002, 21, 1020–1022; (i) Gil-
Moltó, J.; Nájera, C. Adv. Synth. Catal. 2006, 348, 1874–1882; (j) Nishihara, Y.;
Inoue, E.; Ogawa, D.; Okada, Y.; Noyori, S.; Takagi, K. Tetrahedron Lett. 2009, 50,
4643–4646; (k) Nishihara, Y.; Noyori, S.; Okamoto, T.; Suetsugu, M.; Iwasaki, M.
Chem. Lett. 2011, 40, 972–974.
16. 2-Ethynylthiophenes are so unstable that it is difficult to isolate. See: Khan, M.
S.; Al-Suti, M. K.; Shah, H. H.; Al-Humaimi, S.; Al-Battashi, F. R.; Bjernemose, J.
K.; Male, L.; Raithby, P. R.; Zhang, N.; Köhler, A.; Warren, J. E. Dalton Trans.
2011, 40, 10174–10183.
17. Voronkov, M. G.; Tsyrendorzhieva, I. P.; Rakhlin, V. I. Russ. J. Org. Chem. 2009,
45, 1621–1622.
18. Cs+ ion is superior to K+ for iodide trapping. See: (a) Beronius, P.; Pataki, L. J. Am.
Chem. Soc. 1970, 92, 4518–4521; (b) Marlow, A. L.; Davis, J. T. Tetrahedron Lett.
1999, 40, 3539–3542.
19. Ag+ is an efficient reagent to rapidly remove iodide ion. See 3rd paragraph of
the follow reference: Eaborn, C.; Happer, D. A. R. J. Chem. Soc., Chem. Commun.
1991, 1608–1609.
6. Alonso, D. A.; Nájera, C.; Pacheco, M. Adv. Synth. Catal. 2003, 345, 1146–
1158.
20. Hisatsune, I. C.; Adl, T. J. Phys. Chem. 1970, 74, 2875–2877.