B. Malo-Forest et al. / Bioorg. Med. Chem. Lett. 23 (2013) 1712–1715
1715
4. (a) Drugs Fut. 1990, 15, 532–533.; (b) Borvendéq, J.; Hermann, I.; Csuka, O. Acta
Physiol. Hung. 1996, 84, 406; (c) Erdelyi-Tóth, V.; Gyergyay, F.; Szàmel, I.; Pap,
E.; Kràlovanszky, J.; Bojti, E.; Csörgo, M.; Drabant, S.; Klebovich, I. Anti-Cancer
Drugs 1997, 8, 603.
5. (a) Monostory, K.; Jemnitz, K.; Vereczkey, L.; Czira, G. Drug Metab. Dispos. 1997,
25, 1370; (b) Konno, T.; Daitoh, T.; Noiri, A.; Chae, J.; Ishihara, T.; Yamanaka, H.
Org. Lett. 2004, 6, 933.
an antagonist. A probable explanation for the observed change in
the biological response could be the in vitro isomerization of the
double bond, which has already been observed with molecules
such as combretastatin A-4. While tamoxifen has been shown
not to isomerize, 4-hydrotamoxifen, a more electron-rich analogue
of tamoxifen, has been shown to isomerize, a transformation either
promoted by cytochromes P45025,26 or through acid catalysis.17 In
our case, the replacement of an ethyl group by a fluorine atom
would increase the electron density at the alkene moiety thus ren-
dering it more reactive. In addition, the fluorine atom would better
stabilize any intermediate (radical or cationic) that may form
6. Landelle, G.; Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. Chem. Soc. Rev.
2011, 40, 2867.
7. Landelle, G.; Champagne, P. A.; Barbeau, X.; Paquin, J.-F. Org. Lett. 2009, 11, 681.
8. For other synthetic approaches to monofluoroalkenes developed in our
laboratory, see (a) Landelle, G.; Turcotte-Savard, M.-O.; Marterer, J.;
Champagne, P. A.; Paquin, J.-F. Org. Lett. 2009, 11, 5406; (b) Pigeon, X.;
Bergeron, M.; Barabé, F.; Dubé, P.; Frost, H. N.; Paquin, J.-F. Angew. Chem., Int.
Ed. 2010, 49, 1123; (c) Paquin, J.-F. Synlett 2011, 289; (d) Landelle, G.; Turcotte-
Savard, M.-O.; Angers, L.; Paquin, J.-F. Org. Lett. 2011, 13, 1568; (e) Bergeron, M.;
Johnson, T.; Paquin, J.-F. Angew. Chem., Int. Ed. 2011, 50, 11112.
9. For selected recent examples, see (a) Lashley, M. R.; Niedzinski, E. J.; Rogers, J.
M.; Denison, M. S.; Nantz, M. H. Bioorg. Med. Chem. 2002, 10, 4075; (b) Shiina, I.;
Sano, Y.; Nakata, K.; Kikuchi, T.; Sasaki, A.; Ikekita, M.; Hasome, Y. Bioorg. Med.
Chem. Lett. 2007, 17, 2421; (c) Heilmann, J. B.; Hillard, E. A.; Plamont, M.-A.;
Pigeon, P.; Bolte, M.; Jaouen, G.; Vessières, A. J. Organomet. Chem. 2008, 693,
1716; (d) de Oliveira, A. C.; Hillard, E. A.; Pigeon, P.; Rocha, D. D.; Rodrigues, F.
A. R.; Montenegro, R. C.; Costa-Lotufo, L. V.; Goulart, M. O. F.; Jaouen, G. Eur. J.
Med. Chem. 2011, 46, 3778; (e) Abdellatif, K. R. A.; Velázquez, C. A.; Huang, Z.;
Chowdhury, M. A.; Knaus, E. E. Bioorg. Med. Chem. Lett. 2011, 21, 1195; (f)
Demizu, Y.; Okuhira, K.; Motoi, H.; Ohno, A.; Shoda, T.; Fukuhara, K.; Okuda, H.;
Naito, M.; Kurihara, M. Bioorg. Med. Chem. Lett. 2012, 22, 1793.
10. De Médina, P.; Favre, G.; Poirot, M. Curr. Med. Chem. Anticancer Agents 2004, 4,
491.
11. Compound 11 (Scheme 1) has been described previously as a 1:1 E/Z mixture in
a study on Clomiphene analogs, see Baumann, R. J.; Bush, T. L.; Cross-Doersen,
D. E.; Cashman, E. A.; Wright, P. S.; Zwolshen, J. H.; Davis, G. F.; Matthews, D. P.;
Bender, D. M.; Bitonti, A. J. Biochem. Pharmacol. 1998, 55, 841.
12. Zhou, C.; Larock, R. C. J. Org. Chem. 2005, 70, 3765.
13. Anilkumar, R.; Burton, D. J. J. Fluorine Chem. 2005, 126, 457.
14. Okano, T.; Ito, K.; Ueda, T.; Muramatsu, H. J. Fluorine Chem. 1986, 32, 377.
15. Fisher, R. P.; On, H. P.; Snow, J. T.; Zweifel, G. Synthesis 1982, 127.
16. Malo-Forest, B.; Roy, J.-A.; Paquin, J.-F. J. Fluorine Chem. 2012, 145, 77.
17. A slight erosion of the stereochemistry was observed, probably due to a partial
isomerisation of the 4-hydroxyphenyl derivatives, which was previously
described in the Letter, see: Yu, D. D.; Forman, B. M. J. Org. Chem. 2003, 68,
9489. and references therein.
during isomerization since fluorine is known to stabilize
a-fluoro-
carbon radicals27 or -fluorocarbocation.28 In any case, the isomer-
a
ization may also explain the lack of apparent structure–activity
relationship for some of the compounds prepared.
In summary, we have described the stereoselective synthesis of
11 fluorinated derivatives of tamoxifen and have reported growth
inhibition activity for these compounds. In general, the GI50 values
are similar or slightly better than tamoxifen with the most active
compound on MCF7 cell line having a GI50 = 3.6 lM. Surprisingly,
as opposed to tamoxifen, both geometrical isomers, behave
similarly. We hypothesize that this behavior is due to in vitro
isomerization of the compounds. Experiments to explore this pos-
sible isomerization of the fluorinated analogues of tamoxifen are
underway and will be reported in due course.
Acknowledgments
This work was supported by the Canada Research Chair Pro-
gram, the Natural Sciences and Engineering Research Council of
Canada, the Canada Foundation for Innovation, the Fonds de
recherche sur la nature et les technologies (FQRNT), FQRNT Centre
in Green Chemistry and Catalysis, FQRNT Research Network on
Protein Function, Structure and Engineering (PROTEO) and the Uni-
versité Laval.
18. Borbas, K. E.; Mroz, P.; Hamblin, M. R.; Lindsey, J. S. Bioconjugate Chem. 2006,
17, 638.
19. Appel, R. Angew. Chem., Int. Ed. 1975, 14, 801.
20. Ishiyama, T.; Murata, M.; Ahiko, T.-A.; Miyaura, N. Org. Synth. 2000, 77, 176.
21. Shoemaker, R. H. Nat. Rev. Cancer 2006, 6, 813.
References and notes
22. Fang, H.; Tong, W.; Shi, L. M.; Blair, R.; Perkins, R.; Branham, W.; Hass, B. S.; Xie,
Q.; Dial, S. L.; Moland, C. L.; Sheehan, D. M. Chem. Res. Toxicol. 2001, 14, 280.
23. Johnson, M. D.; Zuo, H.; Lee, K.-H.; Trebley, J. P.; Rae, J. M.; Weatherman, R. V.;
Desta, Z.; Flockhart, D. A.; Skaar, T. C. Breast Cancer Res. Treat. 2004, 85, 151.
24. (a) Robertson, D. W.; Katzenellenbogen, J. A. J. Org. Chem. 1982, 47, 2387; (b)
McCague, R.; Leclercq, G.; Legros, N.; Goodman, J.; Blackburn, M.; Jarman, M.;
Foster, A. B. J. Med. Chem. 1989, 32, 2527.
25. (a) Katzenellenbogen, B. S.; Norman, M. J.; Eckert, R. L.; Peltz, S. W.; Mangel, W.
F. Cancer Res. 1984, 44, 112; (b) Williams, M. L.; Lennard, M. S.; Martin, I. J.;
Tucker, G. T. Carcinogenesis 1994, 15, 2733.
1. (a) Grainger, D. J.; Metcalfe, J. C. Nat. Med. 1996, 2, 381; (b) Vogel, C. L. Anti-
Cancer Drugs 2003, 14, 265; (c) Jordan, V. C. J. Med. Chem. 2003, 46, 883; (d)
Jordan, V. C. J. Med. Chem. 2003, 46, 1081; (e) Bai, Z.; Gust, R. Arch. Pharm. Chem.
Life Sci. 2009, 342, 133.
2. Fisher, B.; Costantino, J. P.; Wickerham, D. L.; Redmond, C. K.; Kavanah, M.;
Cronin, W. M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J.; Daly, M.;
Wieand, S.; Tan-Chiu, E.; Ford, L.; Wolmark, N. J. Natl. Cancer Inst. 1998, 90,
1371.
3. (a) Park, K.; Kiteringham, N. R.; O’Neill, P. M. Annu. Rev. Pharmacol. Toxicol.
2001, 41, 443; (b) Smart, B. E. J. Fluorine Chem. 2001, 109, 3; (c) Isanbor, C.;
O’Hagan, D. J. Fluorine Chem. 2006, 127, 303; (d) Kirk, K. H. J. Fluorine Chem.
2006, 127, 1013; (e) Hagmann, W. K. J. Med. Chem. 2008, 54, 4359; (f) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320; (g) Kirk,
K. L. Org. Process Res. Dev. 2008, 12, 305; Hunter, L. Beilstein Org. Chem. 2010, 6,
38.
26. Gao, L.; Tu, Y.; Wegman, P.; Wingren, S.; Eriksson, L. A. J. Chem. Inf. Model. 2011,
51, 2293.
27. (a) Pasto, D. J.; Krasnansky, R.; Zercher, C. J. Org. Chem. 1987, 52, 3062; (b) Pasto,
D. J. J. Am. Chem. Soc. 1988, 110, 8164.
28. (a) Blint, R. J.; McMahon, T. B.; Beauchamp, J. L. J. Am. Chem. Soc. 1974, 96, 1269;
(b) Williamson, A. D.; LeBreton, P. R.; Beauchamp, J. L. J. Am. Chem. Soc. 1976,
98, 2705.