2176
Y. Du et al. / Bioorg. Med. Chem. Lett. 23 (2013) 2172–2176
Figure 2. Effects of the compounds on the mobility rate of BVDV E2 protein in Western blot assay. MDBK cells were infected with BVDV at an MOI of one for 1 h followed by
mock-treatment or treatment with indicated compounds at concentration of 100 M. Cells were harvested at 22 h post infection and aliquots of cell lysates were analyzed by
l
electrophoresis followed by Western blotting to simultaneously detect BVDV E2 glycoprotein (green), and a loading control, b-actin (red), using reagents and apparatus from
LI-COR Biosciences.
or submicromolar EC50 against Dengue and Tacaribe. Consistent
with BVDV results, when pivaloyl was used as the acyl group, a
cyclopropyl ring (31) was the least potent in this series. Increased
ring size in compounds 32 and 33 demonstrated similar improve-
References and notes
1. (a) Steele, K. E.; Anderson, A. O.; Mohamadzadeh, M. Expert Opin. Investig. Drug
2009, 7, 423; (b) Mairuhu, A. T. A.; Brandjes, D. P. M.; van Gorp, E. C. M. IDrugs
2003, 6, 1061.
2. (a) Basler, C. F.; Amarasinghe, G. K. Viruses Interferon 2011, 151; (b) Kuiken, C.;
Thurmond, J.; Dimitrijevic, M.; Yoon, H. Nucleic Acids Res. 2012, 40, D587.
3. (a) Bausch, D. G.; Hadi, C. M.; Khan, S. H.; Lertora, J. J. L. Clin. Infect. Dis. 2010, 51,
1435; (b) Zivkovic, M.; Todorovic, Z.; Canovic, P.; Mijanovic, Z. Med. Pregl. 2009,
62, 63.
4. (a) De Clercq, E. Nat. Rev. Drug Disc. 2002, 1, 13; (b) De Clercq, E. Nat. Rev.
Microbiol. 2004, 2, 704; (c) Narayanan, A.; Bailey, C.; Kashanchi, F.; Kehn-Hall,
K. Expert Opin. Investig. Drug 2011, 20, 239.
5. (a) Prussia, A.; Thepchatri, P.; Snyder, J. P.; Plemper, R. K. Int. J. Mol. Sci. 2011, 12,
4027; (b) Tan, S.-L.; Ganji, G.; Paeper, B.; Proll, S.; Katze, M. G. Nat. Biotechnol.
2007, 25, 1383; (c) Kellam, P. Genome Biol. 2006, 7, 1.
6. Ebihara, H.; Groseth, A.; Neumann, G.; Kawaoka, Y.; Feldmann, H. Thromb.
Haemost. 2005, 94, 240.
7. Block, T. M.; Jordan, R. Antiviral Chem. Chemother. 2001, 12, 317.
8. (a) Dwek, R. A.; Butters, T. D.; Platt, F. M.; Zitzmann, N. Nat. Rev. Drug Disc. 2002,
1, 65; (b) Lu, X.; Lu, Y.; Geschwindt, R.; Dwek, R. A.; Block, T. M. DNA Cell Biol.
2001, 20, 647.
9. (a) Block, T. M.; Lu, X.; Platt, F. M.; Foster, G. R.; Gerlich, W. H.; Blumberg, B. S.;
Dwek, R. A. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 2235; (b) Mehta, A.; Carrouee,
S.; Conyers, B.; Jordan, R.; Butters, T.; Dwek, R. A.; Block, T. M. Hepatology 2001,
33, 1488.
10. (a) Mehta, A.; Ouzounov, S.; Jordan, R.; Simsek, E.; Lu, X.; Moriarty, R. M.; Jacob,
G.; Dwek, R. A.; Block, T. M. Antiviral Chem. Chemother. 2002, 13, 299; (b) Gu, B.;
Mason, P.; Wang, L.; Norton, P.; Bourne, N.; Moriarty, R.; Mehta, A.; Despande,
M.; Shah, R.; Block, T. Antiviral Chem. Chemother. 2007, 18, 49; (c) Chang, J.;
Wang, L.; Ma, D.; Qu, X.; Guo, H.; Xu, X.; Mason, P. W.; Bourne, N.; Moriarty, R.;
Gu, B.; Guo, J.-T.; Block, T. M. Antimicrob. Agents Chemother. 2009, 1501.
11. (a) Durantel, D.; Branza-Nichita, N.; Carrouee-Durantel, S.; Butters, T. D.; Dwek,
R. A.; Zitzmann, N. J. Virol. 2001, 75, 8987; (b) Rawlings, A. J.; Lomas, H.; Pilling,
A. W.; Lee, M. J.-R.; Alonzi, D. S.; Rountree, J. S. S.; Jenkinson, S. F.; Fleet, G. W. J.;
Dwek, R. A.; Jones, J. H.; Butters, T. D. ChemBioChem 2009, 10, 1101; (c)
Yoshikuni, Y. Agric. Biol. Chem. Tokyo 1988, 52, 121; (d) Berg, D.; Junge, B.;
Stoltefuss, J.; Schmidt, R. R. DE 1982, 3024901 A1.; (e) Boeshagen, H.; Junge, B.;
Kinast, G.; Schueller, M.; Stoltefuss, J.; Paessens, A. Eur. Patent Appl. 1989; EP
315,017 A2 19,890,510.
12. (a) Steiner, A. J.; Schitter, G.; Stuetz, A. E.; Wrodnigg, T. M.; Tarling, C. A.;
Withers, S. G.; Fantur, K.; Mahuran, D.; Paschke, E.; Tropak, M. Bioorg. Med.
Chem. 2008, 16, 10216; (b) Schitter, G.; Scheucher, E.; Steiner, A. J.; Stuetz, A. E.;
Thonhofer, M.; Tarling, C. A.; Withers, S. G.; Wicki, J.; Fantur, K.; Paschke, E.;
Mahuran, D. J.; Rigat, B. A.; Tropak, M.; Wrodnigg, T. M. Beilstein J. Org. Chem.
2010, 6.
ment up to 2 lM, but still about 7-fold less potent than compound
24. Extension of the ring size continued to improve the EC50, but
the cellular toxicities increased as before in the eight-membered
ring compound 35 and admantyl ring containing isomers 36 and
37. These results also clearly showed that a terminal amide with
a six-membered cyclohexyl ring and pivaloyl acyl group (24) pro-
vided the optimal antiviral activities across these two families of
viruses (Table 6).
In order to confirm that all the new DNJ derivatives functioned
as inhibitors of glucosidases, we performed a cell-based surrogate
assay, in which Western blot approach was used to analyze the
BVDV glycosylated envelop protein (BVDV E2 protein). When glu-
cosidases are inhibited, alteration of the glycan structure on the
BVDV E2 protein will results in a slower mobility rate of BVDV
E2 protein (Fig. 2). And subsequently, the glycoprotein undergoes
misfolding and degradation leading to reduced protein density
on the blot. We selected 10 compounds with different EC50’s rang-
ing from 0.18 to more than 100
compounds 5, 23, 24, 26, and 27, which had EC50’s lower than
M, resulted in slower mobility rate and reduced intensity in
E2 protein compared to the mock reference; while for the treat-
ment with compounds with EC50 higher than 1 M but lower than
10 M (6, 8, 28, and 31), slower mobility of E2 protein was also ob-
served. However, for treatment with compound 7 (EC50 >100 M)
lM for analysis. Treatment with
1
l
l
l
l
with a secondary amine terminal group, neither E2 protein mobil-
ity or intensity was changed. These results demonstrated that
treatment of the compounds with observed anti-BVDV activity
were able to change the mobility of the E2 protein, and reduce
the quantity of the protein correspondingly, supporting their
inhibitory effect on the target enzymes.
In conclusion, through addition of a new hydrophobic branch to
the alkyl terminal of alkyl-DNJs, we identified novel DNJ deriva-
tives with terminal tertiary carboxamide moieties showing potent
antiviral activities against BVDV, Dengue, and Tacaribe. Optimiza-
tion in the acyl and N-substitution groups led to the discovery of a
novel series of DNJ derivatives with terminal tertiary amide exhib-
iting submicromolar EC50’s and low cellular toxicities. PK and
in vivo efficacy tests are in progress and will be reported in due
course.
13. Wennekes, T.; Meijer, A. J.; Groen, A. K.; Boot, R. G.; Groener, J. E.; van Eijk, M.;
Ottenhoff, R.; Bijl, N.; Ghauharali, K.; Song, H.; O’Shea, T. J.; Liu, H.; Yew, N.;
Copeland, D.; van den Berg, R. J.; van der Marel, G. A.; Overkleeft, H. S.; Aerts, J.
M. J. Med. Chem. 2010, 53, 689.
14. Yu, W.; Gill, T.; Wang, L.; Du, Y.; Ye, H.; Qu, X.; Guo, J.-T.; Cuconati, A.; Zhao, K.;
Block, T. M.; Xu, X.; Chang, J. J. Med. Chem. 2012, 55, 6061.
15. Greimel, P.; Haeusler, H.; Lundt, I.; Rupitz, K.; Stuetz, A. E.; Tarling, C. A.;
Withers, S. G.; Wrodnigg, T. M. Bioorg. Med. Chem. Lett. 2006, 16, 2067.
Acknowledgments
We would like to thank Defense Threat Reduction Agency
(DTRA) for financial support. We are also grateful to Dr. William
A. Kinney for his constructive comments on the manuscript.