Organic & Biomolecular Chemistry
Communication
cascade transformation proceeds via the copper-catalyzed
coupling reaction of diaryliodonium salts and nitriles, under-
goes cyclization into the phenanthridine core. The reaction
outcomes provide a new strategy for synthetically and medicin-
ally phenanthridine derivatives. Further studies to extend the
scope and synthetic utility for the synthesis of substituted
phenanthridines are in progress in our laboratory.
A. N. Pyrko, Opt. Spectrosc., 2006, 100, 386; (i) N. Stevens,
N. O’Connor, H. Vishwasrao, D. Samaroo, E. R. Kandel,
D. L. Akins, C. M. Drain and N. J. Turro, J. Am. Chem. Soc.,
2008, 130, 7182; ( j) P. H. Bernardo, K. F. Wan,
T. Sivaraman, J. Xu, F. K. Moore, A. W. Hung, H. Y. K. Mok,
V. C. Yu and C. L. L. Chai, J. Med. Chem., 2008, 51,
6699; (k) E. Dubost, N. Dumas, C. Fossey, R. Magnelli,
S. Butt-Gueulle, C. Balladonne, D. H. Caignard, F. Dulin,
J. S. d.-O. Santos, P. Millet, Y. Charnay, S. Rault, T. Cailly
and F. Fabis, J. Med. Chem., 2012, 55, 9693.
Experimental section
2 For selected recent examples, see: (a) R. T. McBurney,
A. M. Z. Slawin, L. A. Smart, Y. Yu and J. C. Walton, Chem.
Commun., 2011, 47, 7974; (b) J. Peng, T. Chen, C. Chen and
B. Li, J. Org. Chem., 2011, 76, 9507; (c) A. M. Linsenmeier,
C. M. Williams and S. Brase, J. Org. Chem., 2011, 76, 9127;
(d) Y. Wu, S. M. Wong, F. Mao, T. L. Chan and F. Y. Kwong,
Org. Lett., 2012, 14, 5306; (e) D. Intrieri, M. Mariani,
A. Caselli, F. Ragaini and E. Gallo, Chem. – Eur. J., 2012, 18,
10487; (f) M. Tobisu, K. Koh, T. Furukawa and N. Chatani,
Angew. Chem., Int. Ed., 2012, 51, 11363; (g) M. L. Read
and L.-L. Gundersen, J. Org. Chem., 2013, 78, 1311;
(h) B. Zhang, C. Mück-Lichtenfeld, C. G. Daniliuc and
A. Studer, Angew. Chem., Int. Ed., 2013, 52, 10792;
(i) Q. Wang, X. Dong, T. Xiao and L. Zhou, Org. Lett., 2013,
15, 4846; ( j) T. Xiao, L. Li, G. Lin, Q. Wang, P. Zhang,
Z. W. Mao and L. Zhou, Green Chem., 2014, 16, 2418.
3 For reviews on diaryliodonium salts, see: (a) V. V. Zhdankin
and P. J. Stang, Chem. Rev., 2008, 108, 5299; (b) E. A. Merritt
and B. Olofsson, Angew. Chem., Int. Ed., 2009, 48, 9052;
(c) L. F. Silva and B. Olofsson, Nat. Prod. Rep., 2011, 28,
1722.
4 For selected recent examples, see: (a) R. B. Bedford,
C. J. Mitchell and R. L. Webster, Chem. Commun., 2010, 46,
3095; (b) B. Xiao, Y. Fu, J. Xu, T.-J. Gong, J.-J. Dai, J. Yi and
L. Liu, J. Am. Chem. Soc., 2010, 132, 468; (c) A. J. Hickman
and M. S. Sanford, ACS Catal., 2011, 1, 170; (d) B. Chen,
X.-L. Hou, Y.-X. Li and Y.-D. Wu, J. Am. Chem. Soc., 2011,
133, 7668; (e) A. M. Wagner and M. S. Sanford, Org. Lett.,
2011, 13, 288; (f) N. Jalalian, E. E. Ishikawa, L. F. Silva Jr.
and B. Olofsson, Org. Lett., 2011, 13, 1552; (g) S. Castro,
J. J. Fernández, R. Vicente, F. J. Fañanás and F. Rodríguez,
Chem. Commun., 2012, 48, 9089; (h) J. Wen, R.-Y. Zhang,
S.-Y. Chen, J. Zhang and X.-Q. Yu, J. Org. Chem., 2012, 77,
766; (i) T. E. Storr and M. F. Greaney, Org. Lett., 2013, 15,
1410.
General experimental methods
All experiments were conducted under an air atmosphere.
Flasks were flame dried and cooled under nitrogen before use.
All solvents were dried appropriately. For column chromato-
graphy, 200–300 mesh silica gel was employed. 1H NMR and
13C NMR were recorded on a 300 MHz, 400 MHz or 500 MHz
spectrometer in CDCl3 solution and the chemical shifts were
reported in parts per million (δ) relative to the internal stan-
dard TMS (0 ppm). For HRMS measurements, the mass ana-
lyzer is GC-TOFMS. Unless otherwise noted, materials obtained
from commercial suppliers were used without further
purification.
General procedure for cascade annulation of diaryliodonium
salts and nitriles. A solution of diaryliodonium salts
1
(1 mmol), nitriles 2 (2.0 mmol) and Cu(OTf)2 (36 mg,
0.1 mmol) in DCE (2 mL) was stirred at 150 °C for 20 h. After
completion of the reaction (observed on TLC), the solvent was
evaporated under reduced pressure to obtain the crude
mixture. The residues were purified by silica-gel column
chromatography (ethyl acetate–petroleum ether = 1/10–1/4) to
afford the pure product 3. The obtained product was analyzed
by 1H NMR, 13C NMR and HRMS.
Acknowledgements
We are grateful to the Natural Science Foundation of Jiangsu
(BK20140259), the Priority Academic Program Development of
Jiangsu Higher Education Institutions and Jiangsu Key Labora-
tory of Advanced Catalytic Materials and Technology for gener-
ous financial support for our research.
Notes and references
1 (a) M. Suffness and G. A. Cordell, The Alkaloids, Academic,
New York, 1985, vol. 25, pp 178–189; (b) T. Nakanishi and
M. Suzuki, Org. Lett., 1999, 1, 985; (c) T. Nakanishi,
A. Masuda, M. Suwa, Y. Akiyama, N. Hoshino-Abe and
M. Suzuki, Bioorg. Med. Chem. Lett., 2000, 10, 2321;
(d) T. Ishikawa, Med. Res. Rev., 2001, 21, 61;
(e) W. A. Denny, Curr. Med. Chem., 2002, 9, 1655; (f) S. Zhu,
A. L. Ruchelman, N. Zhou, A. Liu, L. F. Liu and E. J. LaVoie,
Bioorg. Med. Chem., 2005, 13, 6782; (g) J. Zhang and
J. R. Lakowicz, J. Phys. Chem. B, 2005, 109, 8701;
(h) S. L. Bondarev, V. N. Knyukshto, S. A. Tikhomirov and
5 (a) R. J. Phipps and M. J. Gaunt, Science, 2009, 323, 1593;
(b) H. A. Duong, R. E. Gilligan, M. L. Cooke, R. J. Phipps
and M. J. Gaunt, Angew. Chem., Int. Ed., 2011, 50, 463;
(c) Q. Y. Toh, A. McNally, S. Vera, N. Erdmann and
M. J. Gaunt, J. Am. Chem. Soc., 2013, 135, 3772;
(d) B. S. L. Collins, M. G. Suero and M. J. Gaunt, Angew.
Chem., Int. Ed., 2013, 52, 5799; (e) E. Cahard, N. Bremeyer
and M. J. Gaunt, Angew. Chem., Int. Ed., 2013, 52,
9284.
6 R. J. Phipps, N. P. Grimster and M. J. Gaunt, J. Am. Chem.
Soc., 2008, 130, 8172.
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 7904–7908 | 7907