ACS Catalysis
Page 4 of 6
(13) King, D. L.; Zhang, L. A.; Xia, G.; Karim, A. M.; Heldebrant,
D. J.; Wang, X. Q.; Peterson, T.; Wang, Y. Appl. Catal. B-Environ.
2010, 99, 206.
(14) Montini, T.; Singh, R.; Das, P.; Lorenzut, B.; Bertero, N.;
Riello, P.; Benedetti, A.; Giambastiani, G.; Bianchini, C.; Zinoviev,
S.; Miertus, S.; Fornasiero, P. ChemSusChem 2010, 3, 619.
(15) Tavor. D.; Gefen. I.; Dlugy. C.; Wolfson. A. Synth.
Commun. 2011, 41, 3409.
duced through the reduction of N-benzylidene-4-
methylaniline by glycerol because there was no alcohol
left at this moment. In order to testify this assumption, N-
benzylidene-4-methylaniline was used as starting material
and 90% of N-alkyl amine was obtained under the same
reaction conditions. Interestingly, the in-situ generated
glycerol aldehyde didn’t react with aniline possibly due to
its specific structure.
1
2
3
4
5
6
7
8
(16) Wolfson. A.; Dlugy. C.; Shotland. Y.; Tavor. D.
Tetrahedron Lett. 2009, 50, 5951.
In one word, the one-pot synthesis of mono- and di-
substituted amines from nitrobenzenes with equivalent
amount of alcohols were realized successfully using glyc-
erol as reducing agent. To the best of our knowledge, this
is the first time to realize the controllable synthesis of
mono-and di-substituted amines from nitrobenzenes
without the addition of excess amount of alcohol. It offers
an economic and clean method for the one-pot synthesis
of amines from nitrobenzenes.
9
(17) Lawrence, S. A. Amines: Synthesis Propertiesand
Applications, Cambridge University press, Cambridge, 2004.
(18) K. P. C. Vollhardt, N. E. S. Organic Chemistry: Structure
and Function, 3rd ed., W. H. Freeman, New York, 1999, pp. 936,
and references therein.
(19) Guo, D. L.; Huang, H.; Xu, J. Y.; Jiang, H. L.; Liu, H. Org.
Lett. 2008, 10, 4513.
(20) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118,
7217.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(21) Hesp, K. D.; Tobisch, S.; Stradiotto, M. J. Am. Chem. Soc.
2010, 132, 413.
(22) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada,
M. Chem. Rev. 2008, 108, 3795.
(23) Shen, X. Q.; Buchwald, S. L. Angew. Chem. Int. Ed. 2010,
49, 564.
(24) Ahmed, M.; Seayad, A. M.; Jackstell, R.; Beller, M. J. Am.
Chem. Soc. 2003, 125, 10311.
(25) Vieira, T. O.; Alper, H. Chem. Commun. 2007, 2710.
(26) Hollmann, D.; Bahn, S.; Tillack, A.; Beller, M. Chem.
Commun. 2008, 3199.
(27) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.;
Williams, J. M. J. Angew. Chem. Int. Ed. 2009, 48, 7375.
(28) Hollmann, D.; Bahn, S.; Tillack, A.; Beller, M. Angew.
Chem. Int. Ed. 2007, 46, 8291.
(29) Fujita, K.; Komatsubara, A.; Yamaguchi, R. Tetrahedron
2009, 65, 3624.
(30) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007,
317, 790.
(31) Nordstrom, L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc.
2008, 130, 17672.
(32) Kawahara, R.; Fujita, K.; Yamaguchi, R. J. Am. Chem. Soc.
2010, 132, 15108.
(33) Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A.
C.; Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J. J. Am.
Chem. Soc. 2009, 131, 1766.
(34) Kim, J. W.; Yamaguchi, K.; Mizuno, N. J. Catal. 2009, 263,
205.
(35) Prades, A.; Corberan, R.; Poyatos, M.; Peris, E. Chem. Eur.
J. 2008, 14, 11474.
(36) Dam, J. H.; Osztrovszky, G.; Nordstrom, L. U.; Madsen, R.
Chem. Eur. J. 2010, 16, 6820.
(37) Corma, A.; Rodenas, T.; Sabater, M. J. Chem. Eur. J. 2010,
16, 254.
(38) Guillena, G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110,
1611.
ASSOCIATED CONTENT
Supporting Information. The reaction procedures and
characterization results of products were given in the sup-
porting information. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
*fshi@licp.cas.cn.
ACKNOWLEDGMENT
The research was supported by Natural Science Foundation
of China (21073208) and Chinese Academy of Sciences.
REFERENCES
(1) Kamm, B., Gruber, P. R., Kamm, M.,, Ed., 2006.
(2) Perlack, R. D. W., L.L.; Turhollow,A.F.; Graham,R.L.;
Stokes,B.J.; Erbach, D. C. Biomass as feedstock for a bioenergy
and bioproducts industry: the technical feasibility of a billion-ton
annual supply; U. S. Washington, DC 2005.
(3) Werpy, T. P., G.; Aden, A.; Bozell, J.; Holladay, J.; White, J.;
Manheim, A. Top Value added chemicals from biomass, Volume I:
Results of screening potential candidates from sugars and
synthesi gas; U.S. Department of Energy: Washington, DC, 2004.
(4) Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Chem. Rev.
2007, 107, 3952.
(5) de la Piscina, P. R.; Homs, N. Chem. Soc. Rev. 2008, 37,
2459.
(6) Yuan, L. X.; Chen, Y. Q.; Song, C. F.; Ye, T. Q.; Guo, Q. X.;
Zhu, Q. S.; Torimoto, Y.; Li, Q. X. Chem. Commun. 2008, 5215.
(7) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev.
2010, 110, 6503.
(8) Simonetti, D. A.; Soares, R. R.; Dumesic, J. A. Abstr. Pap.
Am. Chem. S. 2006, 232.
(9) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della
Pina, C. Angew. Chem. Int. Ed. 2007, 46, 4434.
(10) Daskalaki, V. M.; Kondarides, D. I. Catal. Today 2009, 144,
75.
(11) Liu, S. F.; Rebros, M.; Stephens, G.; Marr, A. C. Chem.
Commun. 2009, 2308.
(12) Chiodo, V.; Freni, S.; Galvagno, A.; Mondello, N.; Frusteri,
F. Appl. Catal. A-Gen. 2010, 381, 1.
(39) Pingen, D.; Muller, C.; Vogt, D. Angew. Chem. Int. Ed.
2010, 49, 8130.
(40) Imm, S.; Bahn, S.; Neubert, L.; Neumann, H.; Beller, M.
Angew. Chem. Int. Ed. 2010, 49, 8126.
(41) Gunanathan, C.; Milstein, D. Angew. Chem. Int. Ed. 2008,
47, 8661.
(42) He, L.; Lou, X. B.; Ni, J.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan,
K. N. Chem. Eur. J. 2010, 16, 13965.
(43) Zhao, Y. S.; Foo, S. W.; Saito, S. Angew. Chem. Int. Ed.
2011, 50, 3006.
ACS Paragon Plus Environment