E. Yang et al. / Inorganic Chemistry Communications 30 (2013) 152–155
155
[9] (a) J.-W. Ye, J. Wang, J.-Y. Zhang, P. Zhang, Y. Wang, Construction of 2-D lanthanide
coordination frameworks: syntheses, structures and luminescent property,
CrystEngComm 9 (2007) 515–523;
References
[1] (a) G. Ferey, Hybird porous solids: past, present, future, Chem. Soc. Rev. 37 (2008)
191–214;
(b) Y.X. Ren, S.P. Chen, S.G. Gao, Q.Z. Shi, Syntheses, characterization and the
liquid-phase formation enthalpy changes of two new one-dimensional
ribbon-like lanthanide supermolecular polymers, Inorg. Chem. Commun. 9
(2006) 649–653;
(c) N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, O.M. Yaghi, Rod packings
and metal–organic frameworks constructed from rod-shaped secondary
building units, J. Am. Chem. Soc. 127 (2005) 1504–1518;
(d) W.-J. Ji, Q.-G. Zhai, M.-C. Hu, S.-N. Li, Y.-C. Jiang, Y. Wang, Ionothermal synthesis
and characterization of a 3-D (4, 8)-connected porous anionic mental–organic
framework entrapped with 1-D [K2(H2O)6] chains, Inorg. Chem. Commun. 11
(2008) 1455–1458.
(b) J.L.C. Rowsell, O.M. Yaghi, Effects of functionalization, catenation, and variation
of the metal oxide and organic linking units on the low-pressure hydrogen ad-
sorption properties of metal–organic frameworks, J. Am. Chem. Soc. 128 (2006)
1304–1315;
(c) C.N.R. Rao, S. Natarajan, R. Vaidhyanathan, Metal carboxylates with open ar-
chitectures, Angew. Chem. Int. Ed. 43 (2004) 1466–1496;
(d) F. Wang, Z.-S. Liu, H. Yang, Y.-X. Tan, J. Zhang, Hybrid zeolitic imidazolate frame-
works with catalytically active TO4 building blocks, Angew. Chem. Int. Ed. 50
(2011) 450–453;
(e) S.M. Humphrey, P.T. Wood, Mutipie areas of magnetic bistability in the topolog-
ical ferrimagnet [Co3(NC5H3(CO2)2-2,5)2(μ3-OH)2(OH2)2], J. Am. Chem. Soc. 126
(2004) 13236–13237.
[10] (a) Y.B. Go, X.Q. Wang, E.V. Anokhina, A.J. Jacobson, A chain of changes: influence
of noncovalent interactions on the one-dimensional structures of nickel(II)
dicarboxylate coordination polymers with chelating aromatic amine ligands,
Inorg. Chem. 43 (2004) 5360–5367;
[2] (a) Y.-B. Chen, Y. Kang, J. Zhang, New mimic of zeolite: heterometallic organic host
framework accommodating inorganic cations, Chem. Commun. 46 (2010)
3182–3184;
(b) H.-J. Chen, J. Zhang, W.-L. Feng, M. Fu, Synthesis, structures of cobalt/copper
complexes and magnetic property of copper complex with the mixed ligands
5-nitro-1,3-benzenedicarboxylic acid and imidazole, Inorg. Chem. Commun.
9 (2006) 300–303;
(c) Z.-S. Liu, E. Yang, Y. Kang, J. Zhang, Urothermal synthesis of a photoluminescent
zinc coordination polymer, Inorg. Chem. Commun. 14 (2011) 355–357;
(d) P.-X. Yin, J. Zhang, Z.-J. Li, Y.-Y. Qin, J.-K. Cheng, L. Zhang, Q.-P. Lin, Y.-G. Yao, Su-
pra molecular isomerism and various chain/layer substructures in silver(I)
compounds: syntheses, structures, and luminescent properties, Cryst. Growth
Des. 9 (2009) 4884–4896.
(b) Q.-Y. Liu, D.-Q. Yuan, L. Xu, Diversity of coordination architecture of
copper(II)-5-sulfoisophthalic acid: synthesis, crystal structures, and char-
acterization, Cryst. Growth Des. 7 (2007) 1832–1843;
(c) J. Zhang, Y. Kang, R.-B. Zhang, Z.-J. Li, J.-K. Cheng, Y.-G. Yao, A twisting chiral
‘dense’ 75.9 net, incorporating
(2005) 177–178.
a helical sub-structure, CrystEngComm 7
[3] (a) S.T. Zheng, Y. Li, T. Wu, R. Nieto, P.Y. Feng, X.H. Bu, Porous lithium imidazolate
frameworks constructed with charge-complementary ligands, Chem. Eur. J. 16
(2010) 13035–13040;
(b) S.M. Chen, J. Zhang, T. Wu, P.Y. Feng, X.H. Bu, Multiroute synthesis of porous an-
ionic frameworks and size-tunable extraframework organic cation-controlled
gas sorption properties, J. Am. Chem. Soc. 131 (2009) 16027–16029.
[4] (a) J.H. Liao, P.C. Wu, W.C. Huang, Ionic liquid as solvent for the synthesis and crys-
[11] Synthesis of [Cd(5-Nisp)(e-urea)]n (1). A mixture of Cd(NO3)·6H2O (0.163 g,
0.528 mmol), 5-Nisp (0.109 g, 0.517 mmol), e-urea·0.5H2O (1.72 g, 20 mmol)
were sealed in a 25 ml teflon-lined stainless steel autoclave, heated at 120 °C
for 3 days under autogenous pressure. After the reaction was cooled to room
temperature, colorless crystals were produced (yield: 75%, based on Cd). Anal.
Calc. for 1, C11H9CdO7N3: C, 32.41%; H, 2.21%; N, 10.30%. Found: C, 32.47%; H,
2.20%; N, 10.41%. Synthesis of [Cd2(5-Hisp)2(e-urea)2(en)]n (2). A mixture of
Cd(NO3)·6H2O (0.192 g, 0.622 mmol), 5-Hisp (0.103 g, 0.566 mmol),
e-urea·0.5H2O (1.69 g, 19.6 mmol) were sealed in a 25 ml teflon-lined stainless
steel autoclave, heated at 120 °C for 3 days under autogenous pressure. After
the reaction was cooled to room temperature, colorless crystals were produced
(yield: 72%, based on Cd). Anal. Calc. for 2, C23H24Cd2O12N5: C, 35.08%; H,
3.07%; N, 8.89%. Found: C, 35.05%; H, 2.99%; N, 8.81%.
tallization of
a coordination polymer: (EMI)[Cd(BTC)] (EMI=1-ethyl-3-
methylimidazolium, BTC=1,3,5-benzenetricarboxylate), Cryst. Growth Des. 6
(2006) 1062–1063;
(b) Z.J. Lin, D.S. Wragg, J.E. Warren, R.E. Morris, Anion control in the ionothermal syn-
thesis of coordination polymers, J. Am. Chem. Soc. 129 (2007) 10334–10335;
(c) R.E. Morris, Ionothermal synthesis — ionic liquids as functional solvents in the
preparation of crystalline materials, Chem. Commun. 21 (2009) 2990–2998;
(d) J. Zhang, S.M. Chen, X.H. Bu, Multiple functions of ionic liquids in the synthe-
sis of three-dimensional low-connectivity homochiral and achiral frame-
works, Angew. Chem. Int. Ed. 47 (2008) 5434–5437;
(e) W.-J. Ji, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, M.-C. Hu, The first ionothermal synthe-
sis of a 3D ferroelectric metal–organic framework with colossal dielectric
constant, Chem. Commun. 47 (2011) 3834–3836.
[12] X-ray crystallographic study: Diffraction intensities of 1 and 2 were collected at
293 K direction methods and difference Fouriersynthese (Mo-Ka, λ=0.71073
Ǻ). The crystallographic calculations were conducted using SHELXL-97 pro-
grams. Crystal date for 1:
C11H9CdO7N3, M=407.61, orthorhombic,
a=6.7547(8) Ǻ, b=11.0302(9) Å, c=17.1073(19) Ǻ, β=90o, V=1274.6(2)
Ǻ3, T=293(2) K, space group P212121, Z=4, 10975 reflections measured,
2905 independent reflections (Rint =0.0295). The final R1 values were 0.0180
(I>2σ(I)). The final wR(F2) values were 0.0636 (I>2σ(I)). The final R1 values
were 0.0197 (all data). The final wR(F2) values were 0.0639 (all data). The
goodness of fit on F2 was 0.784. Crystal date for 2: C23H24Cd2O12N5,
M=787.27, monoclinic, a=7.152(2) Ǻ, b=18.283(5) Å, c=19.947(6) Ǻ,
β=90.395(7)o, V=2608.3(13) Ǻ3, T=293(2) K, space group P2(1)/n, Z=4,
6447 reflections measured, 3938 independent reflections (Rint =0.0214). The
final R1 values were 0.0406 (I>2σ(I)). The final wR(F2) values were 0.1021
(I>2σ(I)). The final R1 values were 0.0501(all data). The final wR(F2) values
were 0.1074 (all data). The goodness of fit on F2 was 1.030.
[5] (a) J. Zhang, S. Chen, T. Wu, S.T. Zheng, Y. Chen, R.A. Nieto, P. Feng, X. Bu,
Urothermal synthesis of crystalline porous materials, Angew. Chem. Int. Ed.
49 (2010) 8876;
(b) Z.S. Liu, E. Yang, Y. Kang, J. Zhang, Urothermal synthesis of a photoluminescent
zinc coordination polymer, Inorg. Chem. Commun. 14 (2011) 355–357.
[6] (a) J.W. Ye, J.Y. Zhang, G.L. Ning, G. Tian, Y. Chen, Y. Wang, Lanthanide coordina-
tion polymers constructed from dinuclear building blocks: novel structure
evolution from one-dimensional chains to three-dimensional architectures,
Cryst. Growth Des. 8 (2008) 3098–3106;
(b) D.F. Sun, R. Cao, Y.Q. Sun, W.H. Bi, D.Q. Yuan, Q. Shi, X. Li, Syntheses and
structures of two novel copper complexes constructed from unusual planar
tetracopper(II) SBUs, CrystEngComm 13 (2003) 1528–1529.
[13] H. Yang, T. Li, Y. Kang, F. Wang, Urothermal in situ ligand synthesis to fabricate a
metal–organic framework with (3,4)-connected tfi topology, Inorg. Chem.
Commun. 14 (2011) 1695–1697.
[14] (a) X.J. Li, R. Cao, W.H. Bi, Y.Q. Wang, Y.L. Wang, X. Li, Z.G. Guo, A new family of
cadmium(II) coordination polymers from coligands: effect of the coexistent
groups (R=H, \NO2, \OH) on crystal structures and properties, Cryst.
Growth Des. 5 (2005) 1651–1656;
[7] (a) H.-T. Zhang, Y.-Z. Li, H.-Q. Wang, Emmanuel N. Nfor, X.-Z. You, From loop-like
chain to helix: a result of symmetry breaking triggered by the replacement of
coordination water, CrystEngComm 7 (2005) 578–585;
(b) J.W. Ye, Q. Zhang, K.Q. Ye, W.R. Yin, L. Ye, G.D. Yang, Y. Wang, Synthesis, struc-
ture and photoluminescence of a 2-D cadmium(II) metal–organic framework:
[Cd(μ4-NIPH)(μ2-OH2)]n (NIPH=5-nitroisophthalate), Inorg. Chem. Commun.
9 (2006) 744–747.
(b) J.H. Luo, M.C. Hong, R.H. Wang, R. Cao, L. Han, Z.Z. Lin, Synthesis, crystal struc-
ture and fluorescence of two novel mixed-ligand cadmium coordination poly-
mers with different structural motifs, Eur. J. Inorg. Chem. 14 (2003) 2705–2710;
(c) Y.J. Cui, Y.F. Yue, G.D. Qian, B.L. Chen, Luminescent functional metal–organic
frameworks, Chem. Rev. 112 (2012) 1126–1162.
[8] (a) Z.-M. Sun, J.-G. Mao, Y.-Q. Sun, H.-Y. Zeng, A. Clearfield, synthesis, characteriza-
tion, and crystal structures of three new divalent metal carboxylate-sulfonates
with
a layered and one-dimensional structure, Inorg. Chem. 43 (2004)
336–341;
(b) H.B. Abourahma, B. Moulton, V. Kravtsov, M.J. Zaworotko, Supramolecular
isomerism in coordination compounds: nanoscale molecular hexagons and
chains, J. Am. Chem. Soc. 124 (2002) 9990–9991.