1702
R. SURESH AND S. MUTHUSUBRAMANIAN
SUPPORTING INFORMATION
1
Full experimental details and H and 13C NMR spectra for this article can be
REFERENCES
1. (a) Bentley, K. W. The Isoquinoline Alkaloids; Hardwood Academic: Amsterdam, 1998;
vol. 1; (b) Scott, J. D.; Williams, R. M. Chemistry and biology of the tetrahydroisoquino-
line antitumor antibiotics. Chem. Rev. 2002, 102, 1669–1730; (c) Chrzwadowska, M. D.
Asymmetric synthesis of isoquinoline alkaloids. Chem. Rev. 2004, 104, 3341–3370.
2. (a) Kletsas, D.; Li, W.; Han, Z.; Papadopoulos, V. Peripheral-type benzodiazepine recep-
tor (PBR) and PBR drug ligands in fibroblast and fibrosarcoma cell proliferation: Role of
ERK, c-Jun, and ligand-activated PBR-independent pathways. Biochem. Pharmacol.
2004, 67, 1927–1932; (b) Mach, U. R.; Hacking, A. E.; Perachon, S.; Ferry, S.; Weremuth,
C. G.; Schwartz, J.-C.; Sokoloff, P.; Stark, H. Development of novel 1,2,3,4-tetrahydroi-
soquinoline derivatives and closely related compounds as potent and selective dopamine
D3 receptor ligands. Chembiochem 2004, 5, 508–518.
3. (a) Durola, F.; Sauvage, J.-P.; Wenger, O. S. Sterically non-hindering endocyclic ligands
of the bi-isoquinoline family. Chem. Commun. 2006, 171–173; (b) Sweetman, B. A.;
Muller-Bunz, H.; Guiry, P. J. Synthesis, resolution, and racemisation studies of new
tridentate ligands for asymmetric catalysis. Tetrahedron Lett. 2005, 46, 4643–4646;
(c) Lim, C. W.; Tissot, O.; Mattison, A.; Hooper, M. W.; Brown, J. M.; Cowley, A.
R.; Hulmes, D. I.; Blacker, A. J. Practical preparation and resolution of 1-(20-
diphenylphosphino-10-naphthyl)isoquinoline: A useful ligand for catalytic asymmetric
synthesis. Org. Process Res. Dev. 2003, 7, 379–384; (d) Alcock, N. W.; Brown, J. M.;
Hulmes, G. I. Synthesis and resolution of 1-(2-diphenyl phosphino-1-naphthyl)
isoquinoline, a P-N chelating ligand for asymmetric catalysis. Tetrahedron: Asymmetry
1993, 4, 743–756.
4. (a) Birch, A. J.; Jackson, A. H.; Shannon, P. V. R. A new modification of the Pomeranz–
Fritsch isoquinoline synthesis. J. Chem. Soc. Perkin Trans. 1 1974, 2185–2190; (b) Larghi,
E. L.; Kaufman, T. S. Preparation of N-benzylsulfonamido-l,2-dihydroisoquinolines and
their reaction with Raney nickel: A mild, new synthesis of isoquinolines. Tetrahedron Lett.
1997, 38, 3159–3162.
5. (a) Nagubandi, S.; Fodor, G. The mechanism of the Bischler–Napieralski reaction. J.
Heterocycl. Chem. 1980, 17, 1457–1463; (b) Banwell, M. G.; Bissett, B. D.; Busato, S.;
Cowden, C. J.; Hockless, D. C. R.; Holman, J. W.; Reed, R. W.; Wu, A. W. Trifluoro-
methanesulfonic anhydride–4-(N,N-dimethylamino)pyridine as a reagent combination
for effecting Bischler–Napieraiski cyclisation under mild conditions: Application to total
syntheses of the amaryllidaceaealkaloids N-methylcrinasiadine, anhydrolycorinone,
hippadine, and oxoassoanine. J. Chem. Soc., Chem. Commun. 1995, 2551–2553; (c) Fitton,
A. O.; Frost, J. R.; Zakaria, M. M.; Andrew, G. Observations on the mechanism of the
Pictet–Gams reaction. J. Chem. Soc., Chem. Commun. 1973, 889–890.
6. Venkov, A. P.; Statkova-Abeghe, S. M. Synthesis of 3,4-dihydroisoquinolines, 2-alkyl(acyl)-
1(2H)-3,4-dihydroisoquinolinones, 2-alkyl-1(2H)-isoquinolinones, and 1-alkyl-2(2H)-
quinolinones by oxidation with potassium permanganate. Tetrahedron 1996, 52, 1451–1460.
7. Miller, R. B.; Frincke, J. M. Synthesis of isoquinolines from indenes. J. Org. Chem. 1980,
45, 5312–5315.
8. Sakamoto, T.; Konda, Y.; Miura, N.; Hayashi, K.; Yamanaka, H. Condensed heteroaro-
matic ring systems, XI: A facile synthesis of isoquinoline N-oxides. Heterocycles 1986, 24,
2311–2314.