10.1002/anie.201812646
Angewandte Chemie International Edition
COMMUNICATION
(a) 1,4-insertion pathway for the model arylation
Acknowledgement
R
R
CuOAc 10 mol %
ligand 12 mol %
NH Me
N
N
N
Me
Ph
(PhBO)3
+
We thank financial support from Nanyang Technological
University, GSK-EDB Trust Fund (GSK-EDB Green and
Sustainable Manufacturing Award 2017), A*STAR Science &
Engineering Research Council (AME IRG A1783c0010), City
University of Hong Kong (7200534 and 9610369) and National
Science Foundation of China (21502157). CW and XQ
contributed equally to the experiments. AMP and HH contributed
DFT calculations of reaction pathways.
KOAc, toluene
80 o
C
3a' 93% ee (S)
1b R = p-tolyl
2b 0.7 equiv
R
H
Me
N2
Me
R
N2
C2
N1
C6
Me
N2
R
H
Ph
N1
N1
Ph
L
Cu
Cu
Cu
L
L
GS
TS-S
Prod
Insertion barrier of TS-S: 7.3 kcal/mol.
Energy gap between TS-S and TS-R: 1.7 kcal/mol
Keywords: copper catalysis • imine addition • chiral alkylamines
(b) Effect of N-directing groups on arylation of aldimines (10 mol% Cu, 80 oC, 48 h in Scheme 2)
• asymmetric arylation • heteroaromatic amines
Me
OMe
HN
Ph
N
HN
Ph
N
Me
HN
Ph
N
HN
Ph
References
p-tolyl
[1] a) Amines: Synthesis, Properties and Applications (Ed.:S. A. Lawerence),
Cambridge University Press, 2005; b) Chiral Amine Synthesis (Ed.:T. C.
Nugent), Wiley-VCH, Weinheim, 2010.
p-tolyl
p-tolyl
p-tolyl
3a3 32% yield
80% ee
3a4 48% yield
91% ee
3a5 0% yield
3a2 44% yield
87% ee
[2] P. R. Farina, C. A. Homon, E. S. Lazer, T. P. Parks, "Discovery of BIRM
270: A New Class of Leukotriene Biosynthesis Inhibitors" in The Search
for Anti-Inflammatory Drugs: Case Histories from Concept to Clinic
(Eds.: V. J. Merluzzi, J. Adams), Birkhäuser Boston, Boston, 1995, pp.
253.
[3] a) D. H. Overstreet, G. Griebel, Eur. J. Pharmacol. 2004, 497, 49; b) C.
Louis, C. Cohen, R. Depoortère, G. Griebel, Neuropsychopharmacol.
2006, 31, 2180; c) N. Bouloc, J. M. Large, E. Smiljanic, D. Whalley, K. H.
Ansell, C. D. Edlin, J. S. Bryans, Bioorg. Med. Chem. Lett. 2008, 18,
5294; d) J. Qin, P. Dhondi, X. Huang, M. Mandal, Z. Zhao, D.
Pissarnitski, W. Zhou, R. Aslanian, Z. Zhu, W. Greenlee, J. Clader, L.
Zhang, M. Cohen-Williams, N. Jones, L. Hyde, A. Palani, Bioorg. Med.
Chem. Lett. 2011, 21, 664.
(c) Competition experiment between two aldimines
OMe
N
CF3
OMe
CF3
CuOAc 10 mol %
ligand 12 mol %
+
+
HN
Ph
HN
Ph
N
N
N
N
N
(o-tolylBO)3 0.7 equiv
KOAc, toluene
110 oC, 6 h
p-tolyl
p-tolyl
Ph
0.1 mmol
Ph
3a7 6% yield
84% ee
3a6 42% yield
88% ee
0.1 mmol
Scheme 6. (a) 1,4-addition transition state TS-S leading to the major (S)-
isomer. (b) Effect of different N-directing groups in aldimines on arylation
and (c) substituents on N-pyridine group.
[4] J. Yang, Isocitrate dehydrogenase (IDH) inhibitors, 2016, WO
2018/095344 A1.
[5] Y. Yamanaka, M. Moritomo, K. Fujii, T. Tanaka, Y. Fukuda, K. Nishimura,
Pesticide Sci. 1999, 55, 896.
[6] a) S. Kobayashi, Y. Mori, J. S. Fossey, M. M. Salter, Chem. Rev. 2011,
111, 2626; b) C. S. Marques, A. J. Burke, ChemCatChem 2011, 3, 635;
c) P. Tian, H.-Q. Dong, G.-Q. Lin, ACS Catal. 2012, 2, 95.
[7] a) M. Kuriyama, T. Soeta, X. Hao, Q. Chen, K. Tomioka, J. Am. Chem.
Soc. 2004, 126, 8128; b) R. B. C. Jagt, P. Y. Toullec, D. Geerdink, J. G.
de Vries, B. L. Feringa, A. J. Minnaard, Angew. Chem. Int. Ed. 2006, 45,
2789; Angew. Chem. 2006, 118, 2855; c) K. Kurihara, Y. Yamamoto, N.
Miyaura, Adv. Synth. Catal. 2009, 351, 260; d) Y. Luo, A. J. Carnell, H.
W. Lam, Angew. Chem. Int. Ed. 2012, 51, 6762; Angew. Chem. 2012,
124, 6866; e) Y. Wang, Y. Liu, D. Zhang, H. Wei, M. Shi, F. Wang,
Angew. Chem. Int. Ed. 2016, 55, 3776; Angew. Chem. 2016, 128, 3840;
f) T. Yasukawa, T. Kuremoto, H. Miyamura, S. Kobayashi, Org. Lett.
2016, 18, 2716; g) G.-Z. Zhao, G. Sipos, A. Salvador, A. Ou, P. Gao, B.
W. Skelton, R. Dorta, Adv. Synth. Catal. 2016, 358, 1759.
The DFT-optimized transition states indicated that the
copper catalyst ligated with a single bulky phosphoramidite L[24]
was sufficient for excellent enantiofacial induction during
arylation. Ligand L adopted a specific baseball glove-like
conformation, by minimizing steric interaction between its two
large 1-phenylethyl groups (Figure 2). Consequently, one of
them shielded the bottom-right quadrant (front view), whereas
an aromatic ring of the spiro-diindanyl backbone pointed into the
top-left space. Thus, the bottom-left quadrant was left widely
open to house the reacting partners.
[8] a) H. Dai, M. Yang, X. Lu, Adv. Synth. Catal. 2008, 350, 249; b) G.-N.
Ma, T. Zhang, M. Shi, Org. Lett. 2009, 11, 875; c) J. Chen, X. Lu, W. Lou,
Y. Ye, H. Jiang, W. Zeng, J. Org. Chem. 2012, 77, 8541; d) T. Johnson,
M. Lautens, Org. Lett. 2013, 15, 4043; e) C. Schrapel, R. Peters, Angew.
Chem. Int. Ed. 2015, 54, 10289; Angew. Chem. 2015, 127, 10428; f) Z.
Yan, B. Wu, X. Gao, Y.-G. Zhou, Chem. Commun. 2016, 52, 10882.
[9] a) N. Tokunaga, Y. Otomaru, K. Okamoto, K. Ueyama, R. Shintani, T.
Hayashi, J. Am. Chem. Soc. 2004, 126, 13584; b) R. Shintani, M.
Takeda, T. Tsuji, T. Hayashi, J. Am. Chem. Soc. 2010, 132, 13168; c) R.
Shintani, M. Takeda, Y.-T. Soh, T. Ito, T. Hayashi, Org. Lett. 2011, 13,
2977; d) T. Nishimura, A. Noishiki, G. Chit Tsui, T. Hayashi, J. Am.
Chem. Soc. 2012, 134, 5056; e) T. Nishimura, A. Noishiki, Y. Ebe, T.
Hayashi, Angew. Chem. Int. Ed. 2013, 52, 1777; Angew. Chem. 2013,
125, 1821; f) C. Jiang, Y. Lu, T. Hayashi, Angew. Chem. Int. Ed. 2014,
53, 9936; Angew. Chem. 2014, 126, 10094.
[10] a) Z.-Q. Wang, C.-G. Feng, M.-H. Xu, G.-Q. Lin, J. Am. Chem. Soc.
2007, 129, 5336; b) Z. Cui, H.-J. Yu, R.-F. Yang, W.-Y. Gao, C.-G. Feng,
G.-Q. Lin, J. Am. Chem. Soc. 2011, 133, 12394; c) H. Wang, T. Jiang,
M.-H. Xu, J. Am. Chem. Soc. 2013, 135, 971; d) T. Jiang, Z. Wang, M.-H.
Xu, Org. Lett. 2015, 17, 528; e) Y. Li, Y.-N. Yu, M.-H. Xu, ACS Catal.
2016, 6, 661; f) T. Jiang, W.-W. Chen, M.-H. Xu, Org. Lett. 2017, 19,
2138.
Figure 2. Transition state TS-S (left) and disfavored TS-R (right) for
phenylation of (L)(phenyl)Cu(I) complex and bound aldimine 1b. L is
shown in space-filling representation and copper and other reacting
ligands in ball-and-stick. Copper in magenta, carbon of Cu-bound phenyl
ligand in green, nitrogen and carbon of aldimine 1b in blue and pink.
In summary, we report the first example of catalytic
enantioselective arylation of N-azaaryl aldimines using
benchtop-stable arylboroxines, which affords pharmaceutically
relevant chiral benzylic and benzhydryl amines in excellent ee
values.
[11] a) G. Yang, W. Zhang, Angew. Chem. Int. Ed. 2013, 52, 7540; Angew.
Chem. 2013, 125, 7688; b) Q. He, L. Wu, X. Kou, N. Butt, G. Yang, W.
Zhang, Org. Lett. 2016, 18, 288.
This article is protected by copyright. All rights reserved.