aromatic nitroso compounds,11 and reductive coupling of
nitroaromatics.12 Azo compounds can also be obtained by
oxidative coupling of anilines using stoichiometric oxi-
dants, such as mercury(II) oxide,13 manganese salts,14 lead
tetraacetate,15 ferrate salts,16 and tert-butyl hypoiodite.17
Metal-catalyzed oxidative coupling of anilines using O2
has also been reported.18
In our earlier studies, di-tert-butyldiaziridinone (1)19,20
has been shown to be a highly effective nitrogen source for
the diamination of olefins using Pd(0)21 or Cu(I)22 as
catalysts. Very recently, we have shown that diaziridinone
1 can oxidize alcohols to aldehydes and ketones using
CuBr as catalyst.23 In our efforts to further explore the
synthetic utility of diaziridinone, we have found that
anilines can be efficiently oxidized to azo compounds
and hydrazines using CuBr catalyst and diaziridinone 1.
Herein we wish to report our preliminary results on this
subject.
When phenylamine (2a) was treated with di-tert-butyl-
diaziridinone (1) and 5 mol % of CuBr in CH3CN at rt
under air for 2 h, azobenzene 3a was cleanly formed and
isolated in 93% yield (Scheme 1). Similar yield (94%) was
obtained when this reaction was carried out under argon.
Both di-tert-butyldiaziridinone (1) and Cu(I) catalyst are
required for the transformation as no oxidation was ob-
served in the absence of 1 or CuBr under air for 24 h
(Scheme 1).
As shown in Scheme 2, this oxidative coupling can be
extended to a variety of primary anilines bearing either
electron-donating or electron-withdrawing groups at the
para, meta, and ortho positions on the phenyl ring, giving
the corresponding azo compounds in 70ꢀ98% yield
(Scheme 2, 3aꢀ3n). Halo-substituted azobenzenes can be
obtained in high yields from the corresponding anilines,
and no Ullmann-type CꢀN coupling byproducts were
detected (Scheme 2, 3jꢀ3l). As illustrated in the case of
4-bromoaniline (2l), azo product 3l can be obtained on
gram scale in 91% yield (Scheme 2). As shown in Scheme 3,
the oxidative coupling of aniline proceeded faster than the
oxidation of an alcohol. Azobenzene 3o was obtained
when 2o was treated with 1.1 equiv of diaziridinone 1
and 10 mol % of CuBr in CH3CN at rt for 2 h. Both amine
and alcohol were oxidized with 2.1 equiv of 1, giving
diketone 3o0 in 91% yield.
(10) (a) Barbero, M.; Degani, I.; Dughera, S.; Fochi, R.; Perracino, P.
Synthesis 1998, 1235. (b) Merrington, J.; James, M.; Bradley, M. Chem.
Commun. 2002, 140. (c) Tomasulo, M.; Raymo, F. M. Org. Lett. 2005, 7,
4633. (d) Tsai, W.-J.; Shiao, Y.-J.; Lin, S.-J.; Chiou, W.-F.; Lin, L.-C.;
Yang, T.-H.; Teng, C.-M.; Wu, T.-S.; Yang, L.-M. Bioorg. Med. Chem.
Lett. 2006, 16, 4440. (e) Barbero, M.; Cadamuro, S.; Dughera, S.;
Giaveno, C. Eur. J. Org. Chem. 2006, 4884. (f) Lee, M. H.; Cho, B.-
K.; Yoon, J.; Kim, J. S. Org. Lett. 2007, 9, 4515. (g) Dabbagh, H. A.;
Teimouri, A.; Chermahini, A. N. Dyes Pigm. 2007, 73, 239. (h) He, Y.;
He, W.; Wei, R.; Chen, Z.; Wang, X. Chem. Commun. 2012, 1036.
(11) (a) Krageloh, K.; Anderson, G. H.; Stang, P. J. J. Am. Chem.
Soc. 1984, 106, 6015. (b) Davey, M. H.; Lee, V. Y.; Miller, R. D.; Marks,
T. J. J. Org. Chem. 1999, 64, 4976. (c) Park, S. B.; Standaert, R. F.
ꢀ
ꢀ
Tetrahedron Lett. 1999, 40, 6557. (d) Badjic, J. D.; Kostic, N. M.
J. Mater. Chem. 2001, 11, 408. (e) Nihei, M.; Kurihara, M.; Mizutani, J.;
Nishihara, H. J. Am. Chem. Soc. 2003, 125, 2964. (f) Wang, S.; Wang, X.;
Li, L.; Advincula, R. C. J. Org. Chem. 2004, 69, 9073. (g) Priewisch, B.;
€
Ruck-Braun, K. J. Org. Chem. 2005, 70, 2350. (h) Tie, C.; Gallucci, J. C.;
Parquette, J. R. J. Am. Chem. Soc. 2006, 128, 1162. (i) Dong, S.-L.;
€
Loweneck, M.; Schrader, T. E.; Schreier, W. J.; Zinth, W.; Moroder, L.;
Renner, C. Chem.;Eur. J. 2006, 12, 1114. (j) Standaert, R. F.; Park,
S. B. J. Org. Chem. 2006, 71, 7952. (k) Shee, B.; Pratihar, J. L.;
Chattopadhyay, S. Polyhedron 2006, 25, 2513. (l) Peters, M. V.; Stoll,
R. S.; Goddard, R.; Buth, G.; Hecht, S. J. Org. Chem. 2006, 71, 7840. (m)
Harvey, J. H.; Butler, B. K.; Trauner, D. Tetrahedron Lett. 2007, 48,
1661. (n) Liu, Z.; Jiang, M. J. Mater. Chem. 2007, 17, 4249. (o) Kamei,
T.; Kudo, M.; Akiyama, H.; Wada, M.; Nagasawa, J.; Funahashi, M.;
Tamaoki, N.; Uyeda, T. Q. P. Eur. J. Org. Chem. 2007, 1846. (p) Zarwell,
€
S.; Ruck-Braun, K. Tetrahedron Lett. 2008, 49, 4020. (q) Lee, G. W.;
Kim, N.-K.; Jeong, K.-S. Org. Lett. 2010, 12, 2634. (r) Bellotto, S.;
Reuter, R.; Heinis, C.; Wegner, H. A. J. Org. Chem. 2011, 76, 9826.
(12) (a) Chung, T. F.; Wu, Y. M.; Cheng, C. H. J. Org. Chem. 1984,
49, 1215. (b) Ohe, K.; Uemura, S.; Sugita, N.; Masuda, H.; Taga, T.
J. Org. Chem. 1989, 54, 4169. (c) Wada, S.; Urano, M.; Suzuki, H. J. Org.
Chem. 2002, 67, 8254. (d) Srinivasa, G. R.; Abiraj, K.; Gowda, D. C.
Tetrahedron Lett. 2003, 44, 5835. (e) Sakai, N.; Fujii, K.; Nabeshima, S.;
Ikeda, R.; Konakahara, T. Chem. Commun. 2010, 3173. (f) Zhu, H.; Ke,
X.; Yang, X.; Sarina, S.; Liu, H. Angew. Chem., Int. Ed. 2010, 49, 9657.
(g) Hu, L.; Cao, X.; Shi, L.; Qi, F.; Guo, Z.; Lu, J.; Gu, H. Org. Lett.
2011, 13, 5640.
(13) (a) Orito, K.; Hatakeyama, T.; Takeo, M.; Uchiito, S.; Tokuda,
M.; Suginome, H. Tetrahedron 1998, 54, 8403. (b) Flatt, A. K.; Dirk,
S. M.; Henderson, J. C.; Shen, D. E.; Su, J.; Reed, M. A.; Tour, J. M.
Tetrahedron 2003, 59, 8555. (c) Farhadi, S.; Zaringhadam, P.; Sahamieh,
R. Z. Acta Chim. Slov. 2007, 54, 647.
Scheme 1
(14) (a) Barakat, M. Z.; Abdel-Wahab, M. F.; El-Sadr, M. M.
J. Chem. Soc. 1956, 4685. (b) Wheeler, O. H.; Gonzalez, D. Tetrahedron
1964, 20, 189. (c) Bhatnagar, I.; George, M. V. J. Org. Chem. 1968, 33,
2407. (d) Firouzabadi, H.; Vessal, B.; Naderi, M. Tetrahedron Lett. 1982,
23, 1847. (e) Firouzabadi, H.; Mostafavipoor, Z. Bull. Chem. Soc. Jpn.
1983, 56, 914. (f) Shaabani, A.; Lee, D. G. Tetrahedron Lett. 2001, 42,
5833. (g) Gilbert, A. M.; Failli, A.; Shumsky, J.; Yang, Y.; Severin, A.;
Singh, G.; Hu, W.; Keeney, D.; Petersen, P. J.; Katz, A. H. J. Med.
Chem. 2006, 49, 6027. (h) Thorwirth, R.; Bernhardt, F.; Stolle, A.;
Ondruschka, B.; Asghari, J. Chem.;Eur. J 2010, 16, 13236.
(15) (a) Pausacker, K. H.; Scroggie, J. G. J. Chem. Soc. 1954, 4003.
(b) Baer, E.; Tosoni, A. L. J. Am. Chem. Soc. 1956, 78, 2857.
(16) (a) Firouzabadi, H.; Mohajer, D.; Entezari-Moghadam, M.
Bull. Chem. Soc. Jpn. 1988, 61, 2185. (b) Huang, H.; Sommerfeld, D.;
Dunn, B. C.; Lloyd, C. R.; Eyring, E. M. J. Chem. Soc., Dalton Trans.
2001, 1301.
When diphenylamine (4a) was subjected to the reaction
conditions, tetraphenylhydrazine (5a) was obtained in
(17) Takeda, Y.; Okumura, S.; Minakata, S. Angew. Chem., Int. Ed.
2012, 51, 7804.
(18) (a) Grirrane, A.; Corma, A.; Garcıa, H. Science 2008, 322, 1661.
(b) Lu, W.; Xi, C. Tetrahedron Lett. 2008, 49, 4011. (c) Zhang, C.; Jiao,
N. Angew. Chem., Int. Ed. 2010, 49, 6174. (d) Nguyen, H. T.; Coulembier,
O.; Gheysen, K.; Martins, J. C.; Dubois, P. Macromolecules 2012, 45, 9547.
(e) Hu, Z.; Kerton, F. M. Org. Biomol. Chem. 2012, 10, 1618.
(19) For a leading review on diaziridinones, see:Heine, H. W. In The
Chemistry of Heterocyclic Compounds; Hassner, A., Ed.; John Wiley &
Sons, Inc.: New York, 1983; p 547.
(20) For the preparation of di-tert-butyldiaziridinone (1), see: Du,
H.; Zhao, B.; Shi, Y. Org. Synth. 2009, 86, 315.
(21) For Pd(0)-catalyzed diamination of olefins using 1, see: (a) Du,
H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 762. (b) Du, H.; Yuan,
W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 11688. (c) Du, H.;
Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 7496. (d) Du,
H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 8590. (e) Zhao, B.; Du,
H.; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132, 3523.
B
Org. Lett., Vol. XX, No. XX, XXXX