ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Straightforward Synthesis of Cyclic
and Bicyclic Peptides
Xavier Elduque, Enrique Pedroso, and Anna Grandas*
´
Departament de Quımica Organica and IBUB, Facultat de Quımica,
Universitat de Barcelona, Martı i Franques 1-11, 08028 Barcelona, Spain
ꢀ
´
´
ꢀ
Received March 18, 2013
ABSTRACT
Cyclic peptide architectures can be easily synthesized from cysteine-containing peptides with appending maleimides, free or protected, through
an intramolecular Michael-type reaction. After peptide assembly, the peptide can cyclize either during the trifluoroacetic acid treatment, if the
maleimide is not protected, or upon deprotection of the maleimide. The combination of free and protected maleimide moieties and two
orthogonally protected cysteines gives access to structurally different bicyclic peptides with isolated or fused cycles.
Cyclization has been long recognized as providing pep-
tides with increased stability to enzymatic degradation and
better cell permeability (see ref 1 for recent reviews).
Cyclization imposes structural constraints and allows for
structural preorganization of functional groups, but the
degree of flexibility still permitted is expected to enhance
and facilitate interaction with the receptor target. In addi-
tion to their potential role as enzyme inhibitors, cyclic
peptides are considered useful tools to interrogate complex
structures and show promise in the interference of proteinꢀ
protein interactions.1 Cyclic peptides can also mimic protein
loops. In this respect, appending conformationally con-
strained peptides from a scaffold can simulate the distribution
of protein loops in space,2 and this is of interest for immu-
nological studies. In a different context, a Zinc-finger-type
phosphorylated peptide with a cycle formed by metal chela-
tion was able to distinguish between DNAs incorporating
one of the two cytosines involved in epigenetic regulation,
namely 5-hydroxymethylcytosine and 5-methylcytosine.3
Peptide macrocycles can be obtainedby bridgingthe two
ends of the peptide chain (head-to-tail), internal positions,
or both. Chemical synthesis has provided the most fre-
quently occurring natural bridges (disulfides, macrolac-
tams, macrolactones),1,4 as well as rings with biaryls and
diaryl ethers.5 Moreover, ring-closing metathesis, the Cu(I)-
catalyzed azideꢀalkyne cycloaddition,1,4 the reaction be-
tween a nucleophile and an activated pyridine-N-oxide,6
and sulfur-mediated reactions7 have also afforded peptide
cycles. When the latter involve a thiol and an alkene,
thioether formation may take place through either radical8
or Michael-type processes.9 Even though the addition of a
thiol to a maleimide is one of the oldest and most exten-
sively used “click” reactions, it has hardly ever been
exploited to obtain cyclic biomolecules.10 There is one
(4) (a) Jiang, S.; Li, Z.; Ding, K.; Roller, P. P. Curr. Org. Chem. 2008,
12, 1502–1542. (b) Driggers, E. M.; Hale, S. P.; Lee, J.; Terret, N. K. Nat.
Rev. Drug Discovery 2008, 7, 608–624.
(5) (a) Pitsinos, E. N.; Vidali, V. P.; Coladouros, E. A. Eur. J. Org.
Chem. 2011, 1207–1222. (b) Meyer, F.-M.; Collins, J. C.; Borin, B.;
Bradow, J.; Liras, S.; Limberakis, C.; Mathiowtz, A. M.; Philippe, L.;
Price, D.; Song, K.; James, K. J. Org. Chem. 2012, 77, 3099–3114.
(6) Londregan, A. T.; Farley, K. A.; Limberakis, C.; Mullins, P. B.;
Piotrowski, D. W. Org. Lett. 2012, 14, 2890–2893.
(7) Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Chem. Soc. Rev. 2010,
39, 1355–1387.
(8) Aimetti, A. A.; Shoemaker, R. K.; Lin, C.-C.; Anseth, K. S.
Chem. Commun. 2010, 46, 4061–4063.
€
(9) (a) Polinski, A.; Cooney, M. G.; Toy-Palmer, A.; Osapay, G.;
Goodman, M. J. Med. Chem. 1992, 35, 4185–4194. (b) Galande, A. K.;
Trent, J. O.; Spatola, A. F. Biopolymers 2003, 71, 534–551. (c) Zhu, Y.;
Gieselman, M. D.; Zhou, H.; Averin, O.; van der Donk, W. Org. Biomol.
Chem. 2003, 1, 3304–3315. (d) Matteucci, M.; Bhalay, G.; Bradley, M.
Tetrahedron Lett. 2004, 45, 1399–1401.
(1) (a) Marsault, E.; Peterson, M. L. J. Med. Chem. 2011, 54, 1961–
2004. (b) Madsen, C. M.; Clausen, M. H. Eur. J. Org. Chem. 2011, 3107–
3115. (c) White, C. J.; Yudin, A. K. Nat. Chem. 2011, 3, 509–524.
(2) (a) Timmerman, P.; Beld, J.; Puijk, W. C.; Meloren, R. H.
ChemBioChem 2005, 6, 821–824. (b) Heinis, C.; Rutherford, T.; Freund,
S.; Winter, G. Nat. Chem. Biol. 2009, 5, 502–507. (c) Ghosh, P. S.;
Hamilton, A. D. J. Am. Chem. Soc. 2012, 134, 13208–13211.
(3) Nomura, A.; Sugizaki, K.; Yanagisawa, H.; Okamoto, A. Chem.
Commun. 2011, 47, 8277–8279.
r
10.1021/ol400726y
XXXX American Chemical Society