ChemComm
Communication
Notes and references
1 (a) I. del Rio, C. Claver and P. W. N. M. van Leeuwen, Eur. J. Inorg.
Chem., 2001, 2719; (b) H. Neumann, A. Brennfu¨hrer and M. Beller,
Adv. Synth. Catal., 2008, 350, 2437; (c) A. Seayad, S. Jayasree and
R. V. Chaudhari, Org. Lett., 1999, 1, 459; (d) A. Ionescu, G. Laurenczy
and O. F. Wendt, Dalton Trans., 2006, 3934; (e) M. S. Goedheijt,
J. N. H. Reek, P. C. J. Kamer and P. W. N. M. Van Leeuwen, Chem.
Commun., 1998, 2431; ( f ) J. J. R. Frew, M. L. Clarke, U. Mayer, H. van
Rensburgh and R. P. Tooze, Dalton Trans., 2008, 1976;
(g) A. Grabulosa, J. A. Fuentes, J. J. R. Frew, A. M. Z. Slawin and
M. L. Clarke, J. Mol. Catal. A: Chem., 2010, 330, 18; (h) J. J. R. Frew,
M. L. Clarke, K. Damian, A. M. Z. Slawin, H. van Rensburgh and
R. P. Tooze, Chem.–Eur. J., 2009, 15, 10504 and ref’s therein.
Scheme 2 The leading catalysts for enantioselective and regioselective methoxy-
carbonylation of styrene. Results from a full catalyst screen can be found in
the ESI.†
2 (a) W. Clegg, G. R. Eastham, M. R. J. Elsegood, R. P. Tooze, X. L. Wang
and K. Whiston, Chem. Commun., 1999, 1877; (b) C. Jimenez
Rodriguez, D. F. Foster, G. R. Eastham and D. J. Cole-Hamilton,
Chem. Commun., 2004, 1720. For related processes: (c) H. Ooka,
T. Inoue, S. Itsuno and M. Tanaka, Chem. Commun., 2005, 1173;
(d) R. I. Pugh, E. Drent and P. G. Pringle, Chem. Commun., 2001, 1476;
(e) J. A. Fuentes, A. M. Z. Slawin and M. L. Clarke, Catal. Sci. Technol.,
2012, 2, 715; ( f ) T. Fanjul, G. Eastham, M. F. Haddow, A. Hamilton,
P. G. Pringle, A. G. Orpen, T. P. W. Turner and M. Waugh, Catal. Sci.
Technol., 2012, 2, 937; (g) V. de la Fuente, M. Waugh, G. R. Eastham,
J. a. Iggo, S. Castillon and C. Claver, Chem.–Eur. J., 2010, 16, 6919;
of an essentially regiochemically pure branched ester with
similarly good enantioselectivity as it does in hydroxycarbonyl-
ation, providing methanol is used as a reagent (2.5 equiv.),
rather than solvent. The catalysts derived from ligand L4 also
show very different behaviour in neat methanol to using a small
excess (ESI†), with quite respectable 93% regioselectivity and
4 : 1 ratio of enantiomers (Scheme 2). The bulky ligand L3,
which gave very poor catalysts in styrene hydroxycarbonylation,
gives good reactivity near room temperature using 0.5% catalyst,
reasonable control of regioselectivity (80%) and over 20: 1 ratio
of enantiomers. In this case, the more soluble monomeric
catalyst is slightly more active than the (less soluble) dimer
and the performance of the former is shown in Scheme 2.
A range of mono- and dinuclear palladium complexes of a
family of Phanephos ligands have been prepared. Investigating
this group of catalysts in the hydroxycarbonylation and
methoxycarbonylation of styrene and a few of it’s derivatives
has uncovered a remarkable improvement in regioselectivity
from around 1 : 1 in the parent Ph-substituted system to over
100 : 1. While the results referred to in the literature enabled us
to predict some increase in branched selectivity using the
fluorinated ligands, the ability to tune from 1 : 1 to essentially
perfect regioselectivity, whilst retaining decent levels of enantio-
selectivity is completely unexpected. The parent system, 2di
while giving good enantioselectivity delivers less than 50% yield
of the desired enantiomer once conversion, regioselectivity and
ee are taken into account, but 6di produces around 90%
enantiomer yield in these reactions, not too dissimilar from
the best examples of enantioselective hydroformylation.7 It is
therefore hoped that asymmetric hydroxy- and methoxy-
carbonylation of alkenes may be capable of becoming a practical
reaction for scaleable asymmetric synthesis. Mechanistic
studies, catalyst recycling, further optimisation of catalysts,
and new synthetic applications seem to be the most pressing
topics to be dealt with and investigations are underway.
JTD and TMK are joint major contributors to this research
project. The authors thank Chirotech-Dr Reddys Laboratories
and the European Union ITN, NANOHOST for funding.
The contributions of the St Andrews technical staff and the
EPSRC National Mass spectrometry Service are gratefully
acknowledged.
¨
(h) L. Diab, M. Gouygou, E. Manoury, P. Kalck and M. Urrutigoıty,
Tetrahedron Lett., 2008, 49, 5186.
3 (a) I. del Rio, N. Ruiz, C. Claver, L. A. van der Veen and P. W. N. M. van
Leeuwen, J. Mol. Catal. A: Chem., 2000, 161, 39; (b) The selectivity of an
enantioselective carbonylation using chiral phosphonic acid ligands
seems to be difficult to reproduce and transfer to related reactions
(H. Alper, personal communication). Other problems that preclude
application are the use of >10% catalyst along with 3 promoters
(CuCl2, HCl and oxygen); H. Alper and N. Hamel, J. Am. Chem. Soc.,
1990, 112, 2803; (c) 8–38% ee was realised in alkoxycarbonylations
using the same system: Y. Kewu and J. Zuanzhen, Chem. J. Internet,
´
2005, 7, 14; (d) M. Dolors Miqual-Serrano, A. Aghmiz, M. Dieguez,
´
A. M. Madeu-Bulto, C. Claver and D. Sinou, Tetrahedron: Asymmetry,
1999, 10, 4463; (e) K. Damian and M. L. Clarke, unpublished results.
˜
4 (a) E. Guiu, M. Caporali, B. Munoz, C. Muller, M. Lutz, A. L. Spek,
C. Claver and P. W. N. M. Van Leeuwen, Organometallics, 2006,
25, 3102; (b) C. Goddard, A. Ruiz and C. Claver, Helv. Chim. Acta,
2006, 89, 1610; (c) I. del Rio, N. Ruiz and C. Claver, Inorg. Chem.
˜
Commun., 2000, 3, 166; (d) B. Munoz, A. Marinetti, A. Ruiz, S. Castillon
and C. Claver, Inorg. Chem. Commun., 2005, 8, 1113; (e) S. Oi,
M. Nomura, T. Aiko and Y. Inoue, J. Mol. Catal. A: Chem., 1997,
115, 289; ( f ) G. Cometti and G. P. Chiousoli, J. Organomet. Chem.,
1982, 236, C31; (g) B. C. Zhu and X. Z. Jiang, Appl. Organomet. Chem.,
´
2006, 20, 277; (h) C. Blanco, A. Ruiz, C. Godard, N. Fleury-Bregeot,
A. Marinetti and C. Claver, Adv. Synth. Catal., 2009, 351, 1813.
5 (a) T. M. Konrad, J. A. Fuentes, A. M. Z. Slawin and M. L. Clarke,
Angew. Chem., Int. Ed., 2010, 49, 9197; (b) M. L. Clarke and
T. M. Konrad, WO2011030110, University of St Andrews, 2009.
6 (a) P. J. Pye, K. Rossen, R. A. Reamer, N. N. Tsou, R. P. Volante and
P. J. Reider, J. Am. Chem. Soc., 1997, 119, 6207; (b) P. J. Pye, K. Rossen,
R. A. Reamer, R. P. Volante and P. J. Reider, Tetrahedron Lett., 1998,
39, 4441; (c) M. J. Burk, W. Hems, D. Herzberg, Ch. Malan and A. Zanotti-
Gerosa, Org. Lett., 2000, 2, 4173; (d) B. Dominguez, A. Zanotti-Gerosa and
W. Hems, Org. Lett., 2004, 6, 1927; (e) A. Zanotti-Gerosa, Ch. Malan and
D. Herzberg, Org. Lett., 2001, 3, 3687.
7 Some of the most regioselective enantioselective hydroformylation
catalysts for styrene and related substrates: (a) T. P. Clark,
C. R. Landis, S. L. Freed, J. Klosin and K. A. Abboud, J. Am. Chem.
Soc., 2004, 127, 5040; (b) G. M. Noonan, J. A. Fuentes, C. J. Cobley and
M. L. Clarke, Angew. Chem., Int. Ed., 2012, 51, 2477 (see also
WO2012016147); (c) A. T. Axtell, C. J. Cobley, J. Klosin, G. T.
Whiteker, A. Zanotti-Gerosa and K. A. Abboud, Angew. Chem., Int.
Ed., 2005, 44, 5834; (d) N. Sakai, S. Mano, K. Nozaki and H. Takaya,
J. Am. Chem. Soc., 1993, 115, 7033.
c
3308 Chem. Commun., 2013, 49, 3306--3308
This journal is The Royal Society of Chemistry 2013