ChemComm
Communication
stabilized Pt(II) naphthylidene transient and deprotonation of
the latter carbene complex leading to the restoration of the
naphthalene aromatic system. These results also point to the
high potential for discoveries of new reactions induced by
sterically bulky and/or rigid ligands present in a transition
metal coordination sphere.17
Notes and references
Scheme 6 The analogy of the 11 - 12 rearrangement and the pinacol
1 K. M. Engle, T.-S. Mei, X. Wang and J.-Q. Yu, Angew. Chem., Int. Ed.,
2011, 50, 1478.
rearrangement.
2 A. Vigalok, Organometallics, 2011, 30, 4802.
3 C–C bond formation: (a) A. Yahav, I. Goldberg and A. Vigalok, J. Am.
Chem. Soc., 2003, 125, 13634; (b) C. F. Rosewall, P. A. Sibbald,
D. V. Liskin and F. E. Michael, J. Am. Chem. Soc., 2009, 131, 9488;
(c) N. D. Ball, J. W. Kampf and M. S. Sanford, J. Am. Chem. Soc., 2010,
132, 2878; (d) N. D. Ball, J. B. Gary, Y. Ye and M. S. Sanford, J. Am.
Chem. Soc., 2011, 133, 7577.
4 C–F bond formation: (a) K. L. Hull, W. Q. Anani and M. S. Sanford,
J. Am. Chem. Soc., 2006, 128, 7134; (b) J. M. Racowski, J. B. Gary and
M. S. Sanford, Angew. Chem., Int. Ed., 2012, 51, 3414; (c) X. Wang,
T.-S. Mei and J.-Q. Yu, J. Am. Chem. Soc., 2009, 131, 7520;
(d) K. S. L. Chan, M. Wasa, X. Wang and J.-Q. Yu, Angew. Chem.,
Int. Ed., 2011, 50, 9081; (e) T. Furuya and T. Ritter, J. Am. Chem. Soc.,
2008, 130, 10060; ( f ) T. Furuya, D. Benitez, E. Tkatchouk,
A. E. Strom, P. Tang, W. A. Goddard, III and T. Ritter, J. Am. Chem.
Soc., 2010, 132, 3793; (g) S.-B. Zhao, J. J. Becker and M. R. Gagne,
Organometallics, 2011, 30, 3926; (h) A. W. Kaspi, A. Yahav-Levi,
I. Goldberg and A. Vigalok, Inorg. Chem., 2008, 47, 5.
5 Formation of other bonds: (a) K. Sun, X. T. Li, J. Zhang and
Q. Zhang, J. Am. Chem. Soc., 2011, 133, 1694; (b) T. Xu, S. Qiu and
G. Liu, J. Organomet. Chem., 2011, 696, 46; (c) I. S. Dubinsky-David-
chik, S. Potash, I. Goldberg, A. Vigalok and A. N. Vedernikov, J. Am.
Chem. Soc., 2012, 134, 14027.
6 (a) S.-B. Zhao, R.-Y. Wang, H. Nguyen, J. J. Becker and M. R. Gagne,
Chem. Commun., 2012, 48, 443; (b) In a similar system, XeF2 was more
efficient in the Pt-catalyzed cyclization–fluorination: N. A. Cochrane,
H. Nguyen and M. R. Gagne, J. Am. Chem. Soc., 2013, 135, 628.
7 A. W. Kaspi, I. Goldberg and A. Vigalok, J. Am. Chem. Soc., 2010,
132, 10626.
Pt(II) s-complex derived from the 8-aryl-1-naphthyl-bis(tert-butyl)-
phosphine where the newly formed C–C bond is coordinated to
the Pt(II) center. The biaryl unit in 10 is heavily distorted due to the
rigidity of the Pt-coordinated 8-arylnaphthylphosphine and its
inability to accommodate the agostic C–C bond perpendicular
to the Pt(II) coordination plane. These geometric constraints make
the C–C coupling of 9 unfavorable, whereas, typically, the C–C
coupling of Pt(IV) diaryl complexes is exothermic.14 The reaction
coordinate analysis shows that the C–C reductive coupling of 9 to
form 10 involves the low-lying transition state TSPt–C8. Subsequent
isomerization of 10 via another low energy transition state TSs–p
produces the highly geometrically distorted p-complex 11. Inter-
estingly, the transient 11 undergoes a cleavage of the C–C bond
formed initially at the C–C coupling step to form a moderately
stable Pt(II) carbene complex 12. This reaction includes migration
of a formally carbanionic aryl from the C8 to the C7 position of the
naphthalene fragment via the transition state TSC8–C7. As a result,
the geometric distortion of 11 is relieved and the planarity of the
Pt(II)–naphthylphosphine fragment is regained thus contributing
to the exothermicity of this transformation. The formation of 12
from 11 may, formally, be compared with pinacol rearrangement
in organic chemistry (Scheme 6).15
8 (a) M. Crespo, C. M. Amderson, N. Kfoury, M. Font-Bardia and
T. Calvet, Organometallics, 2012, 31, 4401. See also: (b) L. Keyes,
T. Wang, B. O. Patrick and J. A. Love, Inorg. Chim. Acta, 2012,
380, 284.
9 For related Pt(II) complexes see: K. A. Grice, W. Kaminsky and
K. I. Goldberg, Inorg. Chim. Acta, 2011, 369, 76.
10 (a) A. Yahav, I. Goldberg and A. Vigalok, Inorg. Chem., 2005, 44, 1547;
(b) A. Yahav-Levi, I. Goldberg and A. Vigalok, J. Fluorine Chem., 2010,
131, 1100.
The 11 to 12 transformation is the rate limiting step of the
whole reaction sequence in Scheme 6, both in MeCN solution and
in the gas phase.16 The aromaticity of the former naphthalene
fragment present in 12 is restored and complex 13 is formed as a
result of an intramolecular low-barrier proton transfer from
the C7 position of the naphthalene fragment to the fluoride 11 See for example, N. A. Jasim and R. N. Perutz, J. Am. Chem. Soc.,
2000, 122, 8685.
12 Jaguar, version 7.9, Schrodinger, LLC, New York, NY, 2012.
ligand cis- to the naphthyl ligand. The elimination of HF from
¨
13 allows production of a C–H agostic transient 14 required for
the cycloplatination of the 7-aryl-1-naphthylphosphine residue.
The cycloplatination leads to a Pt(IV) hydride intermediate 15 via
the transition state TSCH–Pt. Finally, the observed reaction product
5b results from the reductive elimination of HF from 15 and the
formation of a pyridine–(HF)2 adduct.
In summary, we have discovered an unprecedented 1,3-aryl
migration in aryl a-naphthyl Pt(IV) complexes. The reaction
produces unexpected C(sp2)–C(sp2) coupling products contain-
ing the aryl b-naphthyl rather than the expected aryl a-naphthyl
fragment. Based on the results of the experimental study
and the DFT modeling the reaction mechanism was proposed
that includes a tandem C–C coupling of Pt(IV) aryl naphthyl
complexes, a 1,2-aryl shift in the naphthalene ring to produce a
13 R. H. Crabtree, The Organometallic Chemistry of the Transition Metals,
John Wiley & Sons, 5th edn, 2009.
14 A. Yahav-Levi, I. Goldberg, A. Vigalok and A. N. Vedernikov, J. Am.
Chem. Soc., 2008, 130, 724.
15 M. B. Smith and J. March, March’s Advanced Organic Chemistry:
Reactions, Mechanisms, and Structure, Wiley, New York, 5th edn, 2001.
16 The calculated Gibbs activation energy for the rate limiting step of
the reaction involving the p-methoxyphenyl analog 4c is 19.1/
27.2 kcal molꢀ1 (MeCN solution/gas phase, all at 25 1C), lower than
for the 3,5-difluorophenyl complex 4b (23.1/31.8 kcal molꢀ1
;
Scheme 5), in a qualitative agreement with the trend found in the
experiment. The experimentally observed Gibbs activation energy in
MeCN is 23.0 kcal molꢀ1 for the reaction 4c - 5c at 25 1C (t1/2
=
2.5 h; see the 1st order kinetics plot in Fig. S1, ESI†); the reaction
4b - 5b is complicated by the formation of large amounts of 6b; its
kinetics are more complex with a half-life of about 22 h at 70 1C.
17 P. J. Milner, T. J. Maimone, M. Su, J. Chen, P. Mu¨ller and
S. L. Buchwald, J. Am. Chem. Soc., 2012, 134, 19922.
c
3448 Chem. Commun., 2013, 49, 3446--3448
This journal is The Royal Society of Chemistry 2013