C O M M U N I C A T I O N S
using cationic Ir(COD)2BF4 as the precatalyst resulted in poor
performance (27% conv, 47% ee). The ability of the iridium-phos-
phoramidite catalyst system to perform under acidic reaction
conditions and its tolerance to excess chloride ions is rather
remarkable. In particular, the improved reaction outcome in the
presence of chloride ion is somewhat counterintuitive since halide
ions are known transition-metal-catalyst poisons.9c,16
Acknowledgment. The authors thank the members of the Merck
High Pressure Laboratory for support and Dr. Fanyu Meng for
HRMS analyses. X.Z. and G.H. thank the National Institutes of
Health (GM58832) for financial support.
Supporting Information Available: Experimental procedures,
characterization data for new compounds, and analysis of enantiose-
lectivities of hydrogenation products. This material is available free of
Table 2. Asymmetric Hydrogenation of Substituted Benzophenone
N-H Iminesa
References
(1) (a) Bishop, M. J.; McNutt, R. W. Bioorg. Med. Chem. Lett. 1995, 5, 1311.
(b) Spencer, C. M.; Foulds, D.; Peters, D. H. Drugs 1993, 46, 1055. (c)
Sakurai, S.; Ogawa, N.; Suzuki, T.; Kato, K.; Ohashi, T.; Yasuda, S.; Kato,
H.; Ito, Y. Chem. Pharm. Bull. 1996, 44, 765. Patent applications
include: (d) Tulshian, D.; Ho, G. D.; Silverman, L.; Matasi, J. J.; McLeod,
R. L.; Hey, J. A.; Chapman, R. W.; Bercovici, A.; Cuss, F. M. WO 01/
07050 A1 (Schering-Plough). (e) Jolidon, S.; Narquizian, R.; Pinard, E.
WO 2008/022938 A1 (Hoffman-LaRoche). (f) Ducray, P.; Cavaliero, T.;
Lorhmann, M.; Bouvier, J. WO 2008/062006 A1 (Novartis). (g) Baker,
R. K.; Hale, J. J.; Maio, S.; Rupprecht, K. M. WO 2007/062193 A1 (Merck).
Cetirizine·HCl, a histamine H1-receptor inverse agonist is commercialized
as Zyrtec/Reactine by Pfizer.
(2) (a) Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K. Tetrahedron Lett. 1990,
31, 6681. (b) Pridgen, L. N.; Mokhallalati, M. K.; Wu, M. J. J. Org. Chem.
1992, 57, 1237. (c) Delorme, D.; Berthelette, C.; Lavoie, R.; Roberts, E.
Tetrahedron: Asymmetry 1998, 9, 3963. (d) Plobeck, N.; Powell, D.
Tetrahedron: Asymmetry 2002, 13, 303. (e) Pflum, D. A.; Krishnamurthy,
D.; Han, Z.; Wald, S. A.; Senanayake, C. H. Tetrahedron Lett. 2002, 43,
923. (f) Cabello, N.; Kizirian, J.-C.; Alexakis, A. Tetrahedron Lett. 2004,
45, 4639. (g) Weix, D. J.; Shi, Y.; Ellman, J. A. J. Am. Chem. Soc. 2005,
127, 1092. (h) Bolshan, Y.; Batey, R. A. Org. Lett. 2005, 7, 1481.
(3) Rh-catalyzed enantioselective additions of arylstannanes: (a) Hayashi, T.;
Ishigedani, M. J. Am. Chem. Soc. 2000, 122, 976. Aryltitaniums: (b) Hayashi,
T.; Kawai, M.; Tokunaga, N. Angew. Chem., Int. Ed. 2004, 43, 6125.
Arylboronic acids: (c) Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka,
K. J. Am. Chem. Soc. 2004, 126, 8128. (d) Duan, H.-F.; Jia, Y.-X.; Wang,
L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 2567. (e) Jagt, R. B. C.; Toullec,
P. Y.; Geerdink, D.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Angew.
Chem., Int. Ed. 2006, 45, 2789. (f) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.;
Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336. Also see ref 2g.
(4) A chiral ketoimine-catalyzed addition of Ph2Zn to N-formyl imines has
also been reported. See: Hermanns, N.; Dahmen, S.; Bolm, C.; Bra¨se, S.
Angew. Chem., Int. Ed. 2002, 41, 3692.
c d
,
entry
R1
R2
2
yield (%)b
ee (%)
1
2
3
4
5
6
7
8
2-Cl (1a)
2-Br (1b)
2-Me (1c)
2-OMe (1d)
2-F (1e)
2-CF3 (1f)
3-Cl (1g)
3-OMe (1h)
4-Me (1i)
2,3-Me2 (1j)
2-Cl (1k)
H
H
H
H
H
H
H
H
H
H
2a
2b
2c
2d
2e
2f
2g
2h
2i
2j
2k
2l
2m
2n
2o
2p
2q
2r
94
96
82
88
80
95
89
93
96
91
96
93
94
91
93
90
89
87
87
91
82 (R)
76
36
98
31
46
9
31 (S)
86
10
11
12
13
14
15
16
17
18
4-Me
4-OMe
4-Me
4-OMe
4-Me
4-Me
92
93
91
94
92
72
81
74
2-Cl (1l)
2-Me (1m)
2-Me (1n)
2-Cl-3-CF3 (1o)
2,5-Cl2 (1p)
2,6-Cl2 (1q)
2-Me-5-Cl (1r)
4-Me
4-OMe
a Conditions: [Ir(COD)Cl]2/ligand 4/substrate ) 2.5:10:100, 0.04 M,
1500 psi H2, rt, 36 h. b Isolated yields. c Determined by chiral HPLC or
SFC analysis of the corresponding acetamides (see the Supporting
Information). d Absolute configuration determined by comparison with
refs 3e and 10.
(5) Clayden, J.; Dufour, J.; Grainger, D. M.; Helliwell, M. J. Am. Chem. Soc.
2007, 129, 7488.
(6) For asymmetric reduction of a benzophenone-Cr(CO)3 complex followed
by nucleophilic displacement, see: Corey, E. J.; Helal, C. J. Tetrahedron
Lett. 1996, 37, 4837.
(7) (a) Ohkuma, T.; Koizumi, M.; Ikehira, H.; Yokozawa, T.; Noyori, R. Org.
Lett. 2000, 2, 659. (b) Chen, C.-y.; Reamer, R. A.; Chilenski, J. R.;
McWilliams, C. J. Org. Lett. 2003, 5, 5039. (c) Yamano, T.; Oi, S.; Yamashita,
M. Patent WO 01/040162 A1, 2001 (Takeda Chemical Industries).
(8) (a) Hantzsch, A.; Kraft, F. Ber. Dtsch. Chem. Ges. 1891, 24, 3511. (b)
Moureu, C.; Mignonac, G. Compt. Rend. 1913, 156, 1801. (c) Pickard,
P. L.; Vaughan, D. J. J. Am. Chem. Soc. 1950, 72, 5017. (d) Pickard, P. L.;
Tolbert, T. L. Org. Synth. 1964, 44, 51.
(9) For reviews, see: (a) Tang, W.; Zhang, X. Chem. ReV. 2003, 103, 3029.
(b) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069. (c) Handbook
of Homogeneous Hydrogenation; de Vries, J. G., Elsevier, C. J., Eds.;
Wiley-VCH: Weinheim, Germany, 2007.
(10) Hou, G.; Gosselin, F.; Li, W.; McWilliams, C. J.; Sun, Y.; O’Shea, P. D.;
Davies, I. W.; Chen, C.-y.; Zhang, X. J. Am. Chem. Soc. 2009, 131, 9882.
(11) For a Pd-catalyzed C-H activation approach, see: (a) Zhou, C.; Larock,
R. C. J. Am. Chem. Soc. 2004, 126, 2302. (b) Zhou, C.; Larock, R. C. J.
Org. Chem. 2006, 71, 3551. For an alternative approach involving addition
of LiN(SiMe3)2 to benzophenones, see: Kruger, C.; Rochow, E.; Wanagat,
U. Chem. Ber. 1963, 96, 2132.
(12) For Rh-catalyzed asymmetric hydrogenation of protected ꢀ-dehydroamino
esters using ligand 4, see: Pen˜a, D.; Minnaard, A. J.; de Vries, J. G.; Feringa,
B. L. J. Am. Chem. Soc. 2002, 124, 14552.
(13) (a) Minnaard, A. J.; Feringa, B. L.; Lefort, L.; de Vries, J. G. Acc. Chem.
Res. 2007, 40, 1267. (b) Lefort, L.; Boogers, J. A. F.; Minnaard, A. J.;
Feringa, B. L.; de Vries, J. G. Org. Lett. 2004, 6, 1733.
(14) Mrsˇic´, N.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. J. Am. Chem.
Soc. 2009, 131, 8358.
(15) Inferior results were obtained with metal/ligand ratios of 1:1 (76% conv,
56% ee) and 1:3 (11% conv, 41% ee) using imine 1a. Single monodentate
phosphoramidite-iridium complexes can afford high enantioselectivities;
see: Giacomina, F.; Meetsma, A.; Panella, L.; Lefort, L.; de Vries, A. H. M.;
de Vries, J. G. Angew. Chem., Int. Ed. 2007, 46, 1497.
The hydrogenation appears to be sensitive to the steric and
electronic nature of the substituent at the ortho position of the
aromatic ring (Table 2). Chloro, bromo, and methyl substituents at
the 2-position gave high enantioselectivities (82-91% ee; entries
1-3). Decreased reaction enantioselectivities were observed with
coordinating 2-methoxy and smaller 2-fluoro substituents (entries
4 and 5). Asymmetric hydrogenation of 2-trifluoromethylbenzophe-
none imine 1f gave up to 98% ee (entry 6). The increased
enantioselectivity may be a consequence of the larger van der Waals
hemispheric volume of a CF3 group (42.6 Å3) in comparison with
a methyl group (16.8 Å3).17 Moving substituents to the meta position
led to a significant decrease in enantioselectivity (entries 7-8).
Similarly, a p-methyl substituent gave 31% ee (entry 9). A slight
increase in enantioselectivity was observed when electron-donating
4-methyl or 4-methoxy groups were introduced as R2 substituents
(see entries 1, 11, and 12 and 3, 13, and 14, respectively).
Benzophenone imines having more than one aromatic ring sub-
stituent gave enantioselectivities in the range 72-94% ee (entries
11-18).
In conclusion, we have developed an asymmetric hydrogenation
of benzophenone N-H imines where ortho substitution is a key
feature for high enantioselectivity. The reaction provides efficient
access to diarylmethylamines without nitrogen protection. The
highly modular and inexpensive nature of chiral phosphoramidite
ligands coupled with the ease of preparation of N-H imines bodes
well for further practical applications of this methodology.
(16) Chloride additives improve the enantioselectivity in Ir-phosphoramidite-
catalyzed hydrogenations of quinolines. See: Mrsˇic´, N.; Lefort, L.; Boogers,
J. A. F.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. AdV. Synth. Catal.
2008, 350, 1081.
(17) Seebach, D. Angew. Chem., Int Ed. 1990, 29, 1320.
JA909583S
9
J. AM. CHEM. SOC. VOL. 132, NO. 7, 2010 2125