ORGANIC
LETTERS
2013
Vol. 15, No. 8
2026–2029
Direct Benzothiophene Formation via
Oxygen-Triggered Intermolecular
Cyclization of Thiophenols and Alkynes
Assisted by Manganese/PhCOOH
Kaisheng Liu,† Fan Jia,† Hui Xi,† Yuanming Li,† Xiaojian Zheng,† Qiaoxia Guo,‡
Baojian Shen,‡ and Zhiping Li*,†,‡
Department of Chemistry, Renmin University of China, Beijing 100872, China,
and State Key Laboratory of Heavy Oil Processing, China University of Petroleum,
Beijing 102249, China
Received March 18, 2013
ABSTRACT
An intermolecular oxidative cyclization between thiophenols and alkynes for benzothiophene formation has been established. A variety of
multifunctional benzothiophenes are synthesized. In addition, we demonstrated that the obtained benzothiophenes can be used for further
transformation to give diverse benzothiophene derivatives efficiently and selectively.
The benzothiophene skeleton is an important hetero-
cycle.1 Compared with other heteroaromatic rings, espe-
cially its analogues benzofuran and indole, the synthetic
methods for the formation of benzothiophene skeleton are
rather limited.2 The most common approach is intramole-
cular cyclizations of R-arylthioketones,3 o-alkynyl (or alke-
nyl or ynol) benzenthiols,4 and alkynyl(aryl)thioethers.5
These reactions are selective and efficient, but prefunctio-
nalized thiophenols had to be synthesized for the cycliza-
tions. The intermolecular cyclization of thiophenols with
alkynes is envisioned as the most direct, simple, and atom-
economical approach to benzothiophene skeleton. Sup-
prisingly, although oxidative annulations of alkynes with
phenols6 and anilines7 have been realized for the synthesis
† Renmin University of China.
‡ China University of Petroleum.
(1) (a) Perepichka, I. F., Perepichka, D. F., Eds. Handbook of
Thiophene-Based Materials; Wiley-VCH Verlag: New York, 2009. (b)
Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
(c) Zhang, T. Y.; O’Toole, J.; Proctor, C. S. Sulfur Reports 1999, 22, 1.
(2) (a) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011
111, 2937. (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(c) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
(3) (a) Pinney, K. G.; Bounds, A. D.; Dingeman, K. M.; Mocharla,
V. P.; Pettit, G. R.; Bai, R.; Hamel, E. Bioorg. Med. Chem. Lett. 1999, 9,
1081. (b) Capozzi, G.; Melloni, A.; Modena, G. J. Chem. Soc. C 1970,
2621. (c) Werner, E. G. G. Rec. Trav. Chim. Pays-Bas 1949, 68, 509.
(4) (a) Gabriele, B.; Mancuso, R.; Lupinacci, E.; Veltri, L.; Salerno,
G.; Carfagna, C. J. Org. Chem. 2011, 76, 8277. (b) Wang, Z.; Geng, W.;
Wang, H.; Zhang, S.; Zhang, W.-X.; Xi, Z. Tetrahedron Lett. 2011, 52,
6997. (c) Bryan, C. S.; Braunger, J. A.; Lautens, M. Angew. Chem., Int.
Ed. 2009, 48, 7064. (d) Newman, S. G.; Aureggi, V.; Bryan, C. S.;
Lautens, M. Chem. Commun. 2009, 5236. (e) Nakamura, I.; Sato, T.;
Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 4473.
(5) (a) Kunz, T.; Knochel, P. Angew. Chem., Int. Ed. 2012, 51, 1958.
(b) Larock, R. C.; Yue, D. Tetrahedron Lett. 2001, 42, 6011.
(6) (a) Li, C.; Zhang, Y.; Li, P.; Wang, L. J. Org. Chem. 2011, 76,
ꢀ
4692. (b) Martınez, C.; Alvarez, R.; Aurrecoechea, J. M. Org. Lett. 2009,
11, 1083. (c) Kumar, M. P.; Liu, R.-S. J. Org. Chem. 2006, 71, 4951.
(7) (a) Ackermann, L.; Lygin, A. V. Org. Lett. 2012, 14, 764. (b)
Huestis, M. P.; Chan, L. N.; Stuart, D. R.; Fagnou, K. Angew. Chem.,
Int. Ed. 2011, 50, 1338. (c) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou,
K. J. Am. Chem. Soc. 2010, 132, 18326. (d) Shi, Z.; Zhang, C.; Li, S.; Pan,
D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572. (e)
Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K.
J. Am. Chem. Soc. 2008, 130, 16474.
r
10.1021/ol400719d
Published on Web 04/11/2013
2013 American Chemical Society