Communication
Organic & Biomolecular Chemistry
Particularly notably, Cu-catalyzed halogenation of an aro-
matic C–H bond is not limited to lithium halide as the halo-
genating reagents. The representative results presented here
are realized by using cheaper chlorinating sources in place of
LiCl. It is observed that the chlorination of 2-phenylpyridine
with NaCl provides the desired product in 65% yield, slightly
less than that of LiCl (eqn (6)). Other chloride salts, such as
CaCl2 and KCl, are efficient chlorinating reagents as well.
Accordingly, these results further expand the generality and
application of Cu-catalyzed halogenation transformation.
5 For some representative reviews on C–H activation, see:
(a) D. A. Colby, A. S. Tsai, R. G. Bergman and J. A. Ellman,
Acc. Chem. Res., 2012, 45, 814–825; (b) K. M. Engle,
T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45,
788–802; (c) J. Wencel-Delord, T. Dröge, F. Liu and
F. Glorius, Chem. Soc. Rev., 2011, 40, 4740–4761;
(d) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111,
1215–1292; (e) T. Satoh and M. Miura, Chem.–Eur. J., 2010,
16, 11212–11222; (f) T. W. Lyons and M. S. Sanford, Chem.
Rev., 2010, 110, 1147–1169; (g) D. A. Colby, R. G. Bergman
and J. A. Ellman, Chem. Rev., 2010, 110, 624–625;
(h) L.-M. Xu, B.-J. Li, Z. Yang and Z.-J. Shi, Chem. Soc. Rev.,
2010, 39, 712–733; (i) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem.
Commun., 2010, 46, 677–685; ( j) C.-J. Li, Acc. Chem. Res.,
2009, 42, 335–344; (k) L. Ackermann, R. Vicente and
A. R. Kapdi, Angew. Chem., Int. Ed., 2009, 48, 9792–9826;
(l) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew.
Chem., Int. Ed., 2009, 48, 5094–5115; (m) R. Giri, B.-F. Shi,
K. M. Engle, N. Maugel and J.-Q. Yu, Chem. Soc. Rev., 2009,
38, 3242–3272; (n) B.-J. Li, S.-D. Yang and Z.-J. Shi, Synlett,
2008, 949–957; (o) F. Kakiuchi and T. Kochi, Synthesis,
2008, 3013–3039; (p) T. Satoh and M. Miura, Top. Organo-
met. Chem., 2007, 24, 61–84; (q) D. Alberico, M. E. Scott and
M. Lautens, Chem. Rev., 2007, 107, 174–238.
6 (a) X. B. Wan, Z. X. Ma, B. J. Li, K. Y. Zhang, S. K. Cao,
S. W. Zhang and Z. J. Shi, J. Am. Chem. Soc., 2006, 128,
7416–7417; (b) N. Schröder, J. Wencel-Delord and
F. Glorius, J. Am. Chem. Soc., 2012, 134, 8298–8301;
(c) D. Kalyani, A. R. Dick, W. Q. Anani and M. S. Sanford,
Org. Lett., 2006, 8, 2523–2526; (d) X. Zhao, E. Dimitrijević
and V. M. Dong, J. Am. Chem. Soc., 2009, 131, 3466–3467;
(e) B. R. Song, X. J. Zheng, J. Mo and B. Xu, Adv. Synth.
Catal., 2010, 352, 329–335; (f) X. J. Zheng, B. R. Song,
G. F. Li, B. X. Liu, H. M. Deng and B. Xu, Tetrahedron Lett.,
2010, 51, 6641–6645; (g) T.-S. Mei, R. Giri, N. Maugel and
J.-Q. Yu, Angew. Chem., Int. Ed., 2008, 47, 5215–5219;
(h) R. B. Bedford, M. F. Haddow, C. J. Mitchell and
R. L. Webster, Angew. Chem., Int. Ed., 2011, 50, 5524–5527;
(i) R. B. Bedford, J. U. Engelhart, M. F. Haddow,
C. J. Mitchell and R. L. Webster, Dalton Trans., 2010, 39,
10464–10472; ( j) E. Dubost, C. Fossey, T. Cailly, S. Rault
and F. Fabis, J. Org. Chem., 2011, 76, 6414–6420; for a
recent publication on the silver-catalyzed decarboxylative
chlorination, see: (k) Z. Wang, L. Zhu, F. Yin, Z. Su, Z. Li
and C. Li, J. Am. Chem. Soc., 2012, 134, 4258–4263.
ð6Þ
Conclusions
We have demonstrated a concise and practical Cu-catalyzed
protocol for the preparation of chloro- and bromoarenes via
C–H bond activation. The use of readily available and inexpen-
sive Cu(NO3)2·3H2O as a catalyst, LiX (X = Cl, Br) as a halogen-
ating reagent and O2 as the terminal oxidant is the significant
advantage for this transformation. Moreover, the halogenating
source can be extended to cheaper sodium halide. Further
investigation of a catalytic C–H halogenation mechanism is
currently in progress in our lab.
This work was supported by the National Natural Sciences
Foundation of China (20852004, 20902058, 21272001), Shang-
hai Pujiang Program (09PJ1408100), Shanghai Education
Committee (13ZZ014) and Shanghai Jiao Tong University
(“SMC Rising Star Project” and Present Funding).
Notes and references
1 For reviews, see: (a) Ullmann’s Encyclopedia of Industrial
Chemistry, 6th edn, Wiley-VCH, 2002; (b) S. G. Davos,
Organotransition Metal Chemistry: Application to Organic
Synthesis, Pergamon Press, Oxford, 1982.
2 For some reviews, see: (a) K. C. Nicolaou, P. G. Bulger and
D. Sarlah, Angew. Chem., Int. Ed., 2005, 44, 4442–4489;
(b) A. F. Littke and G. C. Fu, Angew. Chem., Int. Ed., 2002,
41, 4176–4211; (c) R. Stürmer, Angew. Chem., Int. Ed., 1999,
38, 3307–3308; (d) A. Butler and J. V. Walker, Chem. Rev.,
1993, 93, 1937–1944.
7 F. Kakiuchi, T. Kochi, H. Mutsutani, N. Kobayashi,
S. Urano, M. Sato, S. Nishiyama and T. Tanabe, J. Am.
Chem. Soc., 2009, 131, 11310–11311.
3 (a) R. Taylor, Electrophilic Aromatic Substitution, John Wiley,
New York, 1990; (b) P. B. de la Mare, Electrophilic Halogena-
tion, Cambridge University Press, Cambridge, 1976, ch. 5;
(c) E. B. Merkushev, Synthesis, 1988, 923–937; (d) P. D. B. de
la Mare, Electrophilic Halogenation, Cambridge University
Press, New York, 1976.
8 For current reviews, see: (a) A. E. Wendlandt, A. M. Suess
and S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50,
11062–11087; (b) A. N. Campbell and S. S. Stahl, Acc. Chem.
Res., 2012, 45, 851–863.
9 X. Chen, X. S. Hao, C. E. Goodhue and J.-Q. Yu, J. Am.
Chem. Soc., 2006, 128, 6790–6791.
4 For a review, see: V. Snieckus, Chem. Rev., 1990, 90, 10 (a) L. Menini and E. V. Gusevskaya, Chem. Commun., 2006,
879–933.
209–211; (b) L. Menini and E. V. Gusevskaya, Appl. Catal.,
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2013