G. Burgy et al. / European Journal of Medicinal Chemistry 62 (2013) 728e737
737
[10] A. Ionescu, F. Dufrasne, M. Gelbcke, I. Jabin, R. Kiss, D. Lamoral-Theys, DYRK1A
kinase inhibitors with emphasis on cancer, Mini Rev. Med. Chem. 12 (2012)
1315e1329.
[11] B. Smith, F. Medda, V. Gokhale, T. Dunckley, C. Hulme, Recent advances in the
design, synthesis, and biological evaluation of selective DYRK1A inhibitors:
a new avenue for a disease modifying treatment of Alzheimer’s? ACS Chem.
Neurosci. 3 (2012) 857e872.
[12] M. Debdab, F. Carreaux, S. Renault, M. Soundararajan, O. Fedorov,
P. Filippakopoulos, O. Lozach, L. Babault, T. Tahtouh, B. Baratte, Y. Ogawa,
M. Hagiwara, A. Eisenreich, U. Rauch, S. Knapp, L. Meijer, J.P. Bazureau, Leu-
cettines, a class of potent inhibitors of cdc2-like kinases and dual specificity,
tyrosine phosphorylation regulated kinases derived from the marine sponge
leucettamine B: modulation of alternative pre-RNA splicing, J. Med. Chem. 54
(2011) 4172e4186.
[13] T. Tahtouh, J.M. Elkins, P. Filippakopoulos, M. Soundararajan, G. Burgy,
E. Durieu, C. Cochet, R.S. Schmid, D.C. Lo, F. Delhommel, A.E. Oberholzer,
L.H. Pearl, F. Carreaux, J.P. Bazureau, S. Knapp, L. Meijer, Selectivity, cocrystal
structures, and neuroprotective properties of Leucettines, a family of protein
kinase inhibitors derived from the marine sponge alkaloid Leucettamine B,
J. Med. Chem. 55 (2012) 9312e9330.
where the linker is attached. It would therefore be of interest to
immobilize Leucettines at some other sites as well, such as in the
methylenedioxy moiety. This might uncover yet undetected targets.
This possibility is supported by the fact that the kinase inactive
Leucettine 1b shows modest but detectable activity when a PEG
arm is attached (3c) (Table 2). In addition immobilized 3c binds
proteins including DYRK1A and GSK-3 (Fig. 2). These results suggest
some interaction directly with the linker itself or through physico-
chemical properties changes brought about in this area by the
linker attachment. Nevertheless the specificity in binding to Leu-
cettine beads was demonstrated by the fact that excess free ligand
added to the cellular or tissue extracts prior to and during binding
to immobilized Leucettine beads, resulted in reduced binding of the
targets [13]. Another drawback of the affinity chromatography
approach is the fact that it favors detection of the most abundant
targets. Nevertheless all the identified targets found by affinity
chromatography on immobilized Leucettines were also identified
by a competitive affinity method (based on binding competition
with immobilized broad spectrum kinase inhibitors which are able
to concentrate most of the expressed kinome from any cell or tissue
extract) [13]. Altogether, we believe we have established a solid
synthesis protocol to prepare Leucettines for immobilization onto
agarose beads, thereby providing a very useful reagent to purify,
concentrate and identify Leucettines’ targets from any biological
source. As an illustration we have shown here that the expression
pattern of Leucettine L41 in mouse tissues varies considerably from
one organ to the other. Our aim is to develop this method further
and to apply it to the most disease-relevant Leucettines with
appropriate target tissue and cell samples.
[14] M. Knockaert, N. Gray, E. Damiens, Y.T. Chang, P. Grellier, K. Grant,
D. Fergusson, J. Mottram, M. Soete, J.F. Dubremetz, K. LeRoch, C. Doerig,
P.G. Schultz, L. Meijer, Intracellular targets of cyclin-dependent kinase
inhibitors: identification by affinity chromatography using immobilised
inhibitors, Chem. Biol. 7 (2000) 411e422.
[15] S. Bach, M. Knockaert, O. Lozach, J. Reinhardt, B. Baratte, S. Schmitt, S.P. Coburn,
L. Tang, T. Jiang, D.C. Liang, H. Galons, J.F. Dierick, F. Totzke, C. Schächtele,
A.S. Lerman, A. Carnero, Y. Wan, N. Gray, L. Meijer, R-roscovitine targets: protein
kinases and pyridoxal kinase, J. Biol. Chem. 280 (2005) 31208e31219.
[16] M. Knockaert, K. Wieking, S. Schmitt, M. Leost, J. Mottram, C. Kunick, L. Meijer,
Intracellular targets of paullones. Identification following affinity purification
on immobilized inhibitor, J. Biol. Chem. 277 (2002) 25493e25501.
[17] M. Knockaert, L. Meijer, Identifying in vivo targets of cyclin-dependent kinase
inhibitors by affinity chromatography, Biochem. Pharmacol. 64 (2002) 819e825.
[18] G. Franc, C.-O. Turrin, E. Cavero, J.-P. Costes, C. Duhayon, A.-M. Caminade, J.-
P. Majoral, gem-Bisphosphonate-ended group dendrimers: design and gado-
linium complexing properties, Eur. J. Org. Chem. (2009) 4290e4299.
[19] H.L. Kohn, K.D. Park, Acylhydrazone-based cleavable linkers, Patent WO 2010/
014236 A2, 4 February 2010.
[20] J. Diot, M.I. Garcia-Moreno, S.G. Gouin, C.O. Mellet, K. Haupt, J. Kovensky,
Multivalent iminosugars to modulate affinity and selectivity for glycosidases,
Org. Biomol. Chem. 7 (2009) 357e363.
Acknowledgments
[21] C.O. Kappe, Controlled microwave heating in modern organic synthesis,
Angew. Chem., Int. Ed 43 (2004) 6250e6284.
[22] (a) A. Loupy, A. de La Hoz (Eds.), Microwaves in Organic Chemistry, third ed.,
Wiley-VCH, Weinheim, Germany, 2012;
(b) J.-P. Bazureau, M. Draye (Eds.), Ultrasound and Microwave: Recent Ad-
vances in Organic Chemistry, Research Signpost, Kerala, 2011.
[23] Y. Ju, D. Kumar, R.S. Varma, Alkyl sulfone synthesis by CeS coupling reactions,
J. Org. Chem. 71 (2006) 6697e6700.
[24] R.S. Varma, K.P. Naicker, Surfactant pillared clays in phase transfer catalysis:
a new route to alkyl azides from alkyl bromides and sodium azide, Tetrahe-
dron Lett. 39 (1998) 2915e2918.
This research was supported by grants from the ‘Fonds Unique
Interministériel” (FUI) PHARMASEA project (LM), the “Association
France-Alzheimer (Finistère)” (LM) and “Fondation Jérôme
Lejeune” (LM). We are thankful to Charlène BENESTEAU and Lau-
rence BERNARD-TOUAMI (Animalerie de l’Université de Rennes 1)
for providing the mouse tissues. Guillaume BURGY is recipient of
a “CIFRE” PhD fellowship and Tania TAHTOUH of a PhD fellowship
from the “Ministère de la Recherche et de la Technologie” (MRT).
[25] (a) N.P. Peat, P.M. Weintraub, Explosion with sodium azide, Chem. Eng. News
(April 19,1993) 4;
References
(b) V.J. Hruby, L. Biteju, G. Li, Azide explosions discussed, Chem. Eng. News
(Oct 11, 1993) 2.
[26] J.K. Philip, Protecting Groups, third ed., Georg Thieme, Stuggart, New York, 2005.
[27] G. Wang, C. Li, J. Li, X. Jia, Catalyst-free water-mediated N-Boc deprotection,
Tetrahedron Lett. 50 (2009) 1438e1440.
[28] J. Chun, L. He, H.S. Byun, R.J. Bittman, Synthesis of ceramide analogues having
the C(4)eC(5) bond of the long-chain base as part of an aromatic or hetero-
aromatic system, J. Org. Chem. 65 (2000) 7634e7640.
[29] S.N. Maiti, M.P. Singh, R.G. Micetich, Facile conversion of azides to amines,
Tetrahedron Lett. 27 (1986) 1423e1424.
[30] S.C. Kim, K.M. Choi, C.S. Cheong, Synthesis of amlodipine using aza Diels-Alder
reaction, Bull. Korean Chem. Soc. 23 (2002) 143e144.
[31] (a) J.E. Arrowsmith, S.F. Campbell, P.E. Cross, J.K. Stubbs, R.A. Burges,
D.G. Gardiner, R.A. Blackburn, Long-acting dihydropyridine calcium antago-
nists. 1. 2-Alkoxymethyl derivatives incorporating basic substituents, J. Med.
Chem. 26 (1986) 1696e1702;
(b) H. Cheng, X. Cao, M. Xian, L. Fang, T.G. Cai, J.J. Jia, J.B. Tunac, D. Sun, P.G. Wang,
Synthesis and enzyme-specific activation of carbohydrate-geldanamycin conju-
gates with potent anticancer activity, J. Med. Chem. 48 (2005) 645e652.
[32] For applications of Staudinger reaction in chemical biology, see the review:
M. Köhn, R. Breinbauer, the Staudinger ligation e a gift to chemical biology
Angew. Chem., Int. Ed. 43 (2004) 3106e3116.
[33] F. De Moliner, S. Crosignani, L. Banfi, R. Riva, A. Basso, Synthesis of 5-car-
boxamide-oxazolines with a Passerini-Zhu/Staudinger-aza-Wittig two-step
protocol, J. Comb. Chem. 12 (2010) 613e616.
[34] A. Primot, B. Baratte, M. Gompel, A. Borgne, S. Liabeuf, J.L. Romette,
F. Costantini, L. Meijer, Purification of GSK-3 by affinity chromatography on
immobilized axin, Protein Exp. Purif. 20 (2000) 394e404.
[1] M.C. Via, Alzheimer’s Disease: Clinical Pipelines, R&D Challenges, and Future
Directions, Cambridge Healthtech Institute, 2011.
[2] M. Hagiwara, Alternative splicing: a new drug target of the postgenome era,
Biochim. Biophys. Acta 1754 (2005) 324e331.
[3] J. Wegiel, C.X. Gong, Y.W. Hwang, The role of DYRK1A in neurodegenerative
diseases, FEBS J. 278 (2011) 236e245.
[4] W. Becker, Emerging role of DYRK family protein kinases as regulators of
protein stability in cell cycle control, Cell Cycle 11 (2012) 3389e3394.
[5] A.S. Rosenthal, C. Tanega, M. Shen, B.T. Mott, J.M. Bougie, D.T. Nguyen,
T. Mistelli, D.S. Auld, D.J. Maloney, C.J. Thomas, Potent and selective small
molecule inhibitors of specific isoforms of Cdc2-like Kinases (Clk) and dual
specificity tyrosine-phosphorylation-regulated kinases (Dyrk), Bioorg. Med.
Chem. Lett. 21 (2011) 3152e3158.
[6] Y. Ogawa, Y. Nonaka, T. Goto, E. Ohnishi, T. Hiramatsu, I. Kii, M. Yoshida,
T. Ikura, H. Onogi, H. Shibuya, T. Hosoya, N. Ito, M. Hagiwara, Development of
a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A, Nat.
Commun. 1 (2010) 1e9.
[7] O. Fedorov, K. Huber, A. Eisenreich, P. Filippakopoulos, O. King, A.N. Bullock,
D. Szklarczyk, L.J. Jensen, D. Fabbro, J. Trappe, U. Rauch, F. Bracher, S. Knapp,
Specific CLK inhibitors from a novel chemotype for regulation of alternative
splicing, Chem. Biol. 18 (2011) 67e76.
[8] T. Adayev, J. Wegiel, Y.W. Hwang, Harmine is an ATP-competitive inhibitor for
dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A), Arch.
Biochem. Biophys. 507 (2011) 212e218.
[9] D. Frost, B. Meechoovet, T. Wang, S. Gately, M. Giorgetti, I. Shcherbakova,
T. Dunckley,
b-carboline compounds, including harmine, inhibit DYRK1A and
tau phosphorylation at multiple Alzheimer’s disease-related sites, PLoS One 6
(2011) e19264.
[35] J. Reinhardt, Y. Ferandin, L. Meijer, Purification CK1 by affinity chromatogra-
phy on immobilised axin, Protein Exp. Purif. 54 (2007) 101e109.