Organometallics
Communication
1
Chem. Commun. 1985, 1687. (b) Gudat, D.; Niecke, E.; Arif, A. M.;
Cowley, A. H.; Quashie, S. Organometallics 1986, 5, 593. (c) Niecke,
E.; Metternich, H.-J.; Nieger, M.; Gudat, D.; Wenderoth, P.; Malisch,
W.; Habner, C.; Reich, W. Chem. Ber. 1993, 126, 1299.
(8) (a) Binger, P.; Biedenback, B.; Mynott, R.; Kruger, C.; Betz, P.;
Regitz, M. Angew. Chem., Int. Ed. Engl. 1988, 27, 1158. (b) Binger, P.;
Haas, J.; Hermann, A. T.; Langhauser, F.; Kruger, C. Angew. Chem., Int.
Ed. Engl. 1991, 30, 310.
(26) Compounds 4 and 5 were characterized by 31P, H, 13C{1H},
29Si{1H} NMR, infrared spectroscopy and elemental analysis. See
Supporting Information.
(27) CCDC 910162. See Supporting Information.
(28) Search of CCDC: Allen, F. H. Acta Crystallogr., Sect. B: Struct.
Sci. 2002, 58, 380.
(29) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen,
A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.
(30) Maciel, G. E.; McIver, J. W., Jr.; Ostlund, N. S.; Pople, J. A. J.
Am. Chem. Soc. 1970, 92, 11.
(9) Bedford, R. B.; Hill, A. F.; Jones, C. Angew. Chem., Int. Ed. Engl.
1996, 35, 547.
(31) While there are no examples of metallaphosphiranes for direct
comparison, one reviewer points out that phosphiranes in general are
noted to exhibit appreciable low-frequency chemical shifts (e.g., δP
−237 for PhP(C2H4),32 cf. δP 32 for PhP(Me)(Et)R). However, given
the appreciable shielding noted for phosphorus within the parent
phosphaalkenyls, it is questionable whether the chemical shifts of 4
and 5 are merely consistent with a combination of the two opposing
effects.
(10) Bedford, R. B.; Hill, A. F.; Jones, C.; White, A. J. P.; Williams, D.
J.; Wilton-Ely, J. D. E. T. Organometallics 1998, 17, 4744.
(11) Jones has reported hydroruthenation of his bicyclo[2,2,2]
octane-1,4-diphosphaalkyne to the respective bicyclo[2,2,2]octane-1,4-
bis(ruthenaphosphaalkene);12 Hill’s attempts to obtain an osmium
analogue of 1 via hydro-osmation were thwarted by its facile
conversion to a metallacyclic phosphaalkenyl-phosphaalkene com-
plex.13
(12) Brodkorb, F.; Brym, M.; Jones, C.; Shulten, C. J. Organomet.
Chem. 2006, 691, 1025.
(13) Hill, A. F.; Jones, C.; Wilton-Ely, J. D. E. T. Chem. Commun.
1999, 451.
(14) Weber, L.; Kleinebekel, S.; Pumpenmeier, L.; Stammler, H.-G.;
(32) Li, X.; Robinson, K. D.; Gaspar, P. P. J. Org. Chem. 1996, 61,
7702.
(33) Mikokajczyk, M.; Omelanczuk, J.; Perlikowska, W. Tetrahedron
1979, 35, 1531.
(34) While monocarbonyls of Ru(0) are rare, such species have been
noted to exhibit carbonyl stretching modes in the region 1910−1880
cm−1,35 placing 4 and 5 comfortably in this region. Moreover, this is
supported by comparison of the force constant (14.55 N cm−1) with
those derived from Ru(0) dicarbonyls (14.00−14.93 N cm−1).36
(35) See for example: (a) Bohanna, C.; Esteruelas, M. A.; Lahoz, F. J.;
Onate, E.; Oro, L. A.; Sola, E. Organometallics 1995, 14, 4825.
(b) Bolton, P. D.; Grellier, M.; Vautravers, N.; Vendier, L.; Sabo-
Etienne, S. Organometallics 2008, 27, 5088. (c) Hill, A. F.; Owen, G.
R.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 1999, 38,
2759.
Neumann, B. Organometallics 2002, 21, 1998.
(15) Weber, L.; Kleinebekel, S.; Lonnecke, P. Z. Anorg. Allg. Chem.
2002, 628, 803.
(16) Weber, L.; Kaminski, O.; Boeses, R.; Blaser, D. Organometallics
1995, 14, 820.
(17) Weber, L.; Kleinebekel, S.; Stammler, H.-G.; Stammler, A. Z.
Anorg. Allg. Chem. 2002, 628, 810.
(18) (a) Weber, L.; Scheffer, M. H.; Stammler, H.-G.; Neumann, B.;
Schoeller, W. W.; Sundermann, A. Organometallics 1999, 18, 4216.
(b) Weber, L.; Kleinebekel, S.; Haase, T. Z. Anorg. Allg. Chem. 2000,
626, 1857.
(19) (a) Bedford, R. B.; Hibbs, D. E.; Hill, A. F.; Hursthouse, M. B.;
Abdul Malik, K. M.; Jones, C. Chem. Commun. 1996, 1895.
(b) Bedford, R. B.; Hill, A. F.; Jones, C.; White, A. J. P.; Williams,
D. J.; Wilton-Ely, J. D. E. T. Chem. Commun. 1997, 179. (c) Hill, A. F.;
Jones, C.; White, A. J. P.; Williams, D. J.; Wilton-Ely, J. D. E. T. Chem.
Commun. 1998, 367. (d) Bedford, R. B.; Hill, A. F.; Jones, C.; White,
A. J. P.; Williams, D. J.; Wilton-Ely, J. D. E. T. J. Chem. Soc., Dalton
Trans. 1997, 139. (e) Hill, A. F.; Jones, C.; White, A. J. P.; Williams, D.
J.; Wilton-Ely, J. D. E. T. J. Chem. Soc., Dalton Trans. 1998, 1419.
(20) Me3SiCP was prepared by dehydrochlorination of
Me3SiCH2PCl2,21 via a modification of literature methods.22 Toluene
solutions were calibrated for concentration by integration of the
phosphaalkyne 31P{1H} NMR resonance (δP 98.7) against the fully
relaxed resonance of internal PPh3 (d1 > 150 s).
(36) See for instance: (a) Christian, D. F.; Roper, W. R. J. Chem. Soc.
D: Chem. Commun. 1971, 1271. (b) Herberhold, M.; Hill, A. F. J.
Organomet. Chem. 1990, 395, 195.
(37) The metallaphosphirane and η2-phosphaalkene models are
essentially the extreme cases in the application of the Dewar−Chatt−
Duncanson model, distinguished by the extent of dπ → π*(CP)
retro-donation. For the present case, the confirmation of a Ru(0)
center, alongside the P−C distance being intermediate between single
and double bonds (and shorter than in phosphiranes) and
comparability of the 31P spectroscopic data with those of established
η2-phosphaalkenes, lead us to favor the η2-alkene model. This is
supported by our very recent (unpublished) synthesis of an analogue
of 4 derived from 1 (i.e. Ru−PCH(tBu)), for which the C/H
chemical shifts and C−H coupling constants reflect sp2 hybridization,
indicative of a reduced level of retro-donation: Trathen, N.; Crossley,
I. R. Unpublished results.
(38) Cowley, A. H.; Jones, R. A.; Stewart, C. A.; Stuart, A. L. J. Am.
Chem. Soc. 1983, 105, 3737.
(39) Ionkin, A. S.; Marshall, W. J.; Fish, B. M.; Schiffhauer, M. P.;
Davidson, F.; McEwen, C. N.; Keys, D. E. Organometallics 2007, 26,
5050.
(40) See for example: Onishi, M. Bull. Chem. Soc. Jpn. 1991, 64, 3039.
(41) The original report of [TpRu{PCHtBu}(CO)(PPh3)]
describes it as “difficult to obtain in analytical purity” and presents
no characterization data.4 We have recently obtained this material in
purity, confirming the facility of its synthesis: Trathen, N. Unpublished
results.
(21) Averre, C. E.; Coles, M. P.; Crossley, I. R.; Day, I. J. Dalton
Trans. 2012, 41, 278.
(22) (a) Mansell, S. M.; Green, M.; Kilby, R. J.; Murry, M.; Russell,
C. A. C. R. Chem. 2010, 13, 1073. (b) Mansell, S. M.; Green, M.;
Russell, C. A. Dalton Trans. 2012, 41, 14360.
(23) Synthesis of 3. To [RuHCl(CO)(PPh3)3] (1.00 g, 1.05 mmol)
suspended in CH2Cl2 was added excess (1.2 equiv) Me3SiCP as a
solution in toluene. After 2 h, the solvent was removed under reduced
pressure and the residue thoroughly agitated with hexane. Anaerobic
filtration afforded pure 3, which was dried in vacuo. Yield: 0.8 g, 95%.
1
(24) Compound 3 was characterized by 31P, H, 13C{1H}, 29Si{1H}
(42) Synthesis of 6. Typically, a solution of 3 (200 mg, 0.248 mmol)
in CH2Cl2 (10 cm3) was added to a CH2Cl2 suspension of 1 equiv
PhHgCl. After it was stirred anaerobically for 2 h, the solution was
filtered and solvent removed in vacuo. Yield = 80%.
NMR and infrared spectroscopy, and elemental analysis. See
Supporting Information.
(25) Synthesis of 4 and 5. Typically, to 3 (200 mg, 2.48 × 10−4 mol)
suspended in thf (5 cm3) was added 1 equiv of Li(pz′) (generated in
situ); the mixture was stirred for 1 h at room temperature and the
solvent removed at reduced pressure. The residue was extracted into
CH2Cl2, the extract filtered, and the solvent removed in vacuo. Yield:
70%.
1
(43) Compound 6 was characterized by 31P, H, 13C{1H}, 29Si{1H},
199Hg{1H} NMR and infrared spectroscopy, and elemental analysis.
See Supporting Information.
(44) CCDC 927274. See Supporting Information.
2504
dx.doi.org/10.1021/om4001988 | Organometallics 2013, 32, 2501−2504