ORGANIC
LETTERS
2013
Vol. 15, No. 9
2096–2099
Copper-Catalyzed Regioselective
Reaction of Internal Alkynes and
Diaryliodonium Salts
Ze-Feng Xu, Chen-Xin Cai, and Jin-Tao Liu*
Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry,
Chinese Academy of Science, Shanghai 200032, China
Received February 6, 2013
ABSTRACT
The copper-catalyzed highly regioselective reaction of internal alkynes with diaryliodonium salts was achieved for the first time. R-Arylketones
were obtained in moderate to good yields from arylpropargylic alcohols or aryl alkyl alkynes under mild conditions. It was found that the two kinds
of substrates underwent two different arylationÀoxygenation pathways under different reaction conditions based on deuterated experiments,
controlling experiments, and spectroscopic analysis of reaction intermediates.
Carbonyl compounds, especially R-aryl carbonyl
compounds, are of particular importance in organic and
pharmaceutical chemistry, and Markovnikov hydration of
alkynes is an ideal method for their synthesis. Mercury(II)
salts combined with acids, such as HgO/H2SO4 and
HgO/BF3, although of potential toxicity, are reliable
catalytic systems for this transformation and are widely
used.1 Alternative transition metallic catalysts have been
sought in recent years, such as Pt, Fe, Pd, Ir, Ag, SnÀW,
and Co.2 Recently, it has been found that gold complexes
can efficiently catalyze the transformation of alkynes to
ketones (Scheme 1A).3 Among some recent significant
studies, Zhang’s group made a major contribution to the
gold-catalyzed transformations of propargylic esters to
eneketons, and a AuI/III catalysis cycle was established to
synthesize R-arylketones utilizing boronic acids as the
coupling partners and selectfluor as an oxidant to transfer
(3) (a) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew.
Chem., Int. Ed. 2002, 41, 4563. (b) Casado, R.; Contel, M.; Laguna, M.;
Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925. (c) Zhou, C.-Y.;
Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325. (d) Marion, N.;
Ramon, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131, 448. (e) Leyva,
A.; Corma, A. J. Org. Chem. 2009, 74, 2067. (f) Hashmi, A. S. K.; Hengst,
€
T.; Lothschutz, C.; Rominger, F. Adv. Synth. Catal. 2010, 352, 1315.
(g) Huang, J.; Zhu, F.; He, W.; Zhang, F.; Wang, W.; Li, H. J. Am. Chem.
Soc. 2010, 132, 1492. (h) Nun, P.; Ramon, R. S.; Gaillard, S.; Nolan, S. P.
J. Organomet. Chem. 2011, 696, 7. (i) Ghosh, N.; Nayak, S.; Sahoo, A. K.
J. Org. Chem. 2011, 76, 500. (j) Wang, D.; Cai, R.; Sharma, S.; Jirak, J.;
Thummanapelli, S. K.; Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen,
J. L.; Shi, X. J. Am. Chem. Soc. 2012, 134, 9012.
(4) Zhang, G.; Peng, Y.; Cui, L.; Zhang, L. Angew. Chem., Int. Ed.
2009, 48, 3112 and references therein.
(5) For recent or significant examples: (a) Liu, C.; Zhang, W.; Dai,
L. X.; You, S. L. Org. Lett. 2012, 14, 4525. (b) Jui, N. T.; Garber,
J. A. O.; Finelli, F. G.; MacMillan, D. W. C. J. Am. Chem. Soc. 2012,
134, 10815. (c) Phipps, R. J.; McMurray, L.; Ritter, S.; Duong, H. A.;
Gaunt, M. J. J. Am. Chem. Soc. 2012, 134, 10773. (d) Harvey, J. S.;
Simonovich, S. P.; Jamison, C. R.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2011, 133, 13782. (e) Bigot, A.; Williamson, A. E.; Gaunt, M. J.
J. Am. Chem. Soc. 2011, 133, 13778. (f) Allen, A.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2011, 133, 4260. (g) Duong, H. A.; Gilligan, R. E.;
Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011,
50, 463. (h) Ciana, C.-L.; Phipps, R. J.; Brandt, J. R.; Meyer, F.-M.;
Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 458. (i) Phipps, R. J.;
Gaunt, M. J. Science 2009, 323, 1593. (j) Phipps, R. J.; Grimster, N. P.;
Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172. (k) Gigant, N.;
Chausset-Boissarie, L.; Belhomme, M. C.; Poisson, T.; Pannecoucke,
X.; Gillaizeau, I. Org. Lett. 2013, 15, 278.
(1) (a) Kutscheroff, M. Chem. Ber. 1881, 14, 1540. (b) Kutscheroff,
M. Chem. Ber. 1884, 17, 13. (c) Thomas, R. J.; Campbell, K. N.;
Hennion, G. F. J. Am. Chem. Soc. 1938, 60, 718. (d) Nishizawa, M.;
Skwarczynski, M.; Imagawa, H.; Sugihara, T. Chem. Lett. 2002, 31, 12.
(2) (a) Jennings, P. W.; Hartman, J. W.; Hiscox, W. C. Inorg. Chim.
Acta 1994, 222, 317. (b) Wu, X.-F.; Bezier, D.; Darcel, C. Adv. Synth.
Catal. 2009, 351, 367. (c) Fukuda, Y.; Shiragami, H.; Utimoto, K.;
Nozaki, H. J. Org. Chem. 1991, 56, 5816. (d) Hirabayashi, T.; Okimoto,
Y.; Saito, A.; Morita, M.; Sakaguchi, S.; Ishii, Y. Tetrahedron 2006, 62,
2231. (e) Thuong, M. B. T.; Mann, A.; Wagner, A. Chem. Commun.
2012, 48, 434. (f) Jin, X.; Oishi, T.; Yamaguchi, K.; Mizuno, N. Chem.;
Eur. J. 2011, 17, 1261. (g) Tachinami, T.; Nishimura, T.; Ushimaru, R.;
Noyori, R.; Naka, H. J. Am. Chem. Soc. 2013, 135, 50.
r
10.1021/ol4003543
Published on Web 04/15/2013
2013 American Chemical Society