2798
A. Seidler et al. / Tetrahedron Letters 54 (2013) 2795–2798
Table 2
The optical/calculated HOMO–LUMO gaps and calculated excitation energies of the molecular rods 1a–e and 2a–2e
Compound
Optical HOMO–LUMO gapa (eV)
Calculated HOMO–LUMO gapb (eV)
Calculated excitation energyc (eV)
1a
1b
1c
1d
1e
2a
2b
2c
2d
2e
3.1 (3.0)
3.5
3.7
3.0 (2.9)
3.3 (3.2)
2.8 (2.6)
3.1
3.3
2.7 (2.6)
3.0 (2.9)
5.2
5.9
6.4
5.0
5.6
4.9
5.5
6.2
4.7
5.2
3.4
4.0
4.1
3.2
3.7
3.1
3.8
4.1
3.0
3.4
a
The optical HOMO–LUMO gap was calculated from the onset of the longest wavelength band in the experimental UV–vis spectra or
from the wavelength of the maximum emission band in the experimental fluorescence spectra (in parentheses).
b
The HOMO–LUMO gap in the ground state was calculated by DFT (B2PLYP/ccpVDZ) on the structures optimised by DFT (B3LYP/
ccpVDZ).
c
The energy needed for the electron excitation to the first singlet state was calculated by TD-DFT (B2PLYP/cc-pVDZ) on the structures
optimised by DFT (B3LYP/ccpVDZ).
4. Wu, S.; González, M. T.; Huber, R.; Grunder, S.; Mayor, M.; Schönenberger, C.;
estimate the actual excitation energies by 67–88% (Table 2) and,
therefore, the energies needed for the electron excitation to the
first singlet state calculated by the TD-DFT method better approx-
imate the corresponding optical HOMO–LUMO gaps, being overes-
timated now by only 7–24%.
In conclusion, we have prepared a series of oligo(p-phenylene-
ethynylene)- and oligo(p-phenylenevinylene)-type molecular rods
with thiophene or thieno[3,2-b]thiophene core units and end-
Calame, M. Nat. Nanotechnol. 2008, 3, 569–574.
5. van Ruitenbeek, J.; Scheer, E.; Weber, H. B. In Introducing Molecular Electronics;
Cuniberti, G., Fagas, G., Richter, K., Eds.; Springer: Berlin, 2005; pp 253–274.
6. He, J.; Sankey, O.; Lee, M.; Tao, N.; Li, X.; Lindsay, S. Faraday Discuss. 2006, 131,
145–154.
7. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev.
2005, 105, 1103–1169.
8. (a) Khobragade, D.; Stensrud, E. S.; Mucha, M.; Smith, J. R.; Pohl, R.; Stibor, I.;
Michl, J. Langmuir 2010, 26, 8483–8490; (b) Joseph, Y.; Guse, B.; Nelles, G. Chem.
Mater. 2009, 21, 1670–1676.
9. Osaka, I.; McCullough, R. D. In Design and Synthesis of Conjugated Polymers;
Leclerc, M., Morin, J.-F., Eds.; Wiley-VCH: Weinheim, 2010; pp 91–145.
10. (a) He, J.; Chen, F.; Liddell, P. A.; Andréasson, J.; Straight, S. D.; Gust, D.; Moore,
T. A.; Moore, A. L.; Li, J.; Sankey, F.; Lindsay, S. M. Nanotechnology 2005, 16,
695–702; (b) Dulic, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.; de
Jong, J. J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.; van Wees, B. J. Phys. Rev.
Lett. 2003, 91, 207402–207404.
11. Pearson, D. L.; Tour, J. M. J. Org. Chem. 1997, 62, 1376–1387.
12. Kergueris, C.; Bourgouin, J.-P.; Palacin, S.; Esteve, D.; Urbina, C.; Magoga, M.;
Joachim, C. Phys. Rev. B 1999, 59, 12505–12513.
13. (a) Mishra, A.; Ma, C.-Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141–1276;
(b) Handbook of Oligo and Polythiophenes; Fichou, D., Ed.; Wiley-VCH:
Weinheim, 1999.
14. For the synthesis of 1e, see: (a) Stuhr-Hansen, N.; Soerensen, J. K.; Moth-
Poulsen, K.; Christensen, J. B.; Bjoernholm, T.; Nielsen, M. B. Tetrahedron 2005,
61, 12288–12295; (b) Tour, J. M.; Rawlett, A. M.; Kozaki, M.; Yao, Y.; Jagessar, R.
C.; Dirk, S. M.; Price, D. W.; Reed, M. A.; Zhou, C.-W.; Chen, J.; Wang, W.;
Campbell, I. Chem. Eur. J. 2001, 7, 5118–5134.
capped with sulfur anchoring groups (AcSÀ, t-BuSÀ). These
p-elec-
tron systems have been characterised by UV–vis/fluorescence spec-
troscopy and by DFT/TD-DFT calculations. The possibly reduced
conjugation or cross-conjugation in these molecular rods has led
to hypsochromic shifts of the corresponding kmax in the UV–vis spec-
tra (about 60À86 nm) as well as to weak or no fluorescence, in con-
trast to the properties of linearly-conjugated molecular rods. Good
correlations between the experimental optical HOMO–LUMO gaps
and calculated excitation energies have been found. Experiments
to estimate their molecular conductivities by using the mechani-
cally controllable break-junction method are currently underway.
Acknowledgments
15. For the synthesis of 2e, see: (a) Grunder, S.; Huber, R.; Horhoiu, V.; González,
M. T.; Schönenberger, C.; Calame, M.; Mayor, M. J. Org. Chem. 2007, 72, 8337–
8344; (b) Liang, T.-T.; Naitoh, Y.; Horikawa, M.; Ishida, T.; Mizutani, W. J. Am.
Chem. Soc. 2006, 128, 13720–13726; (c) Seferos, D. S.; Banach, D. A.; Alcantar,
N. A.; Israelachvili, J. N.; Bazan, G. C. J. Org. Chem. 2004, 69, 1110–1119; (d)
Stuhr-Hansen, N.; Christensen, J. B.; Harrit, N.; Bjoernholm, T. J. Org. Chem.
2003, 68, 1275–1282.
16. Huber, R.; González, M. T.; Wu, S.; Langer, M.; Grunder, S.; Horhoiu, V.; Mayor,
M.; Bryce, M. R.; Wang, C.; Jitchati, R.; Schönenberger, C.; Calame, M. J. Am.
Chem. Soc. 2008, 130, 1080–1084.
This research was supported by a Grant from the ASCR (Grant
No. IAA400550919), by the Academy of Sciences of the Czech
Republic (Grant No. M200550914), by the Ministry of Education,
Youth and Sports of the Czech Republic from specific university re-
search (MSMT No. 21/2011), and by the Institute of Organic Chem-
istry and Biochemistry, Academy of Sciences of the Czech Republic
(RVO: 61388963).
17. Yamamoto, T.; Toyota, K.; Morita, N. Tetrahedron Lett. 2010, 51, 1364–1366.
18. Neenan, T. X.; Whitesides, G. M. J. Org. Chem. 1988, 53, 2489–2496.
19. Arnanz, A.; Moreno, C.; Marcos, M. L.; Velasco, J. G.; Delgado, S. Eur. J. Inorg.
Chem. 2007, 5215–5225.
20. Arnanz, A.; Marcos, M. L.; Delgado, S.; Velasco, J. G.; Moreno, C. J. Organomet.
Chem. 2008, 693, 3457–3470.
21. Li, P.; Ahrens, B.; Feeder, N.; Raithby, P. R.; Teat, S. J.; Khan, M. S. Dalton Trans.
2005, 874–883.
22. Novak, I.; Ng, S. C.; Fang, J.; Mok, C. J.; Huang, H. H. J. Phys. Chem. 1994, 98, 748–
751.
Supplementary data
Supplementary data (the experimental procedures and NMR
spectra of the substrates and products) associated with this article
References and notes
23. Gryko, D. T.; Clausen, C.; Roth, K. M.; Dontha, N.; Bocian, D. F.; Kuhr, W. G.;
Lindsey, J. S. J. Org. Chem. 2000, 65, 7345–7355.
24. Murray, M. M.; Kaszynski, P.; Kaisaki, D. A.; Chang, W.; Dougherty, D. A. J. Am.
Chem. Soc. 1994, 116, 8152–8161.
25. Mitsumori, T.; Inoue, K.; Koga, N.; Iwamura, H. J. Am. Chem. Soc. 1995, 117,
2467–2478.
26. Wex, B.; Kaafarani, B. R.; Kirschbaum, K.; Neckers, D. C. J. Org. Chem. 2005, 70,
4502–4505.
27. Leriche, P.; Raimundo, J. M.; Turbiez, M.; Monroche, V.; Allain, M.; Sauvage, F.
X.; Roncali, J.; Frère, P.; Skabara, P. J. J. Mater. Chem. 2003, 13, 1324–1332.
28. Yamaguchi, Y.; Matsubara, Y.; Ochi, T.; Wakamiya, T.; Yoshida, Z.-I. J. Am. Chem.
Soc. 2008, 130, 13867–13869.
1. (a) Design and Synthesis of Conjugated Polymers; Leclerc, M., Morin, J.-F., Eds.;
Wiley-VCH: Weinheim, 2010; (b) Organic Electronics; Klauk, H., Ed.; Wiley-
VCH: Weinheim, 2006; (c) Electronic Materials: The Oligomer Approach;
Müllen, K., Wegner, G., Eds.; Wiley-VCH: Weinheim, 1998.
2. (a) Bumm, L. A. ACS Nano 2008, 2, 403–407; (b) Haick, H.; Cahen, D. Prog. Surf.
Sci. 2008, 83, 217–261; (c) Metzger, R. M. J. Mater. Chem. 2008, 18, 4364–4396;
(d) Weiss, E. A.; Kriebel, J. K.; Rampi, M.-A.; Whitesides, G. M. Philos. Trans.
Royal Soc. A 2007, 365, 1509–1537.
3. (a) Chen, F.; Tao, N. J. Acc. Chem. Res. 2009, 42, 429–438; (b) Chen, F.; Hihath, J.;
Huang, Z.; Li, X.; Tao, N. J. Annu. Rev. Phys. Chem. 2007, 58, 535–564; (c) Lindsay,
S. M.; Ratner, M. A. Adv. Mater. 2007, 19, 23–31.