Page 9 of 11
ACS Catalysis
1
2
3
4
5
6
7
8
(15) (a) Hutchins, R. O.; Hutchins, M. K. In Comprehensive Organic
Catalysis: Influences of Lithium Cooperation and Ligand Set. Angew.
Chem. Int. Ed. 2018, 57, 10651−10655.
(19) (a) Falcone, M.; Poon, L. N.; Tirani, F. F.; Mazzanti, M.
Synthesis. Eds. Trost, B. M.; Fleming, I. Pergamon Press, Oxford, U.
K., 1991, 8, 25−78. (b) Seyden–Penne, J. Reductions by the
Alumino– and Borohydrides in Organic Synthesis. 2nd Ed., Wiley–
VCH, New York, 1997, 122.
(16) (a) Bauer, H.; Alonso, M.; Färber, C.; Elsen, H.; Pahl, J.;
Causero, A.; Ballmann, G.; De Proft, F.; Harder, S. Imine
Hydrogenation with Simple Alkaline Earth Metal Catalysts. Nat.
Catal. 2018, 1, 40−47. (b) Fleury–Brégeot, N.; Fuente, V.; de la
Castillón, S.; Claver, C. Highlights of Transition Metal‐Catalyzed
Asymmetric Hydrogenation of Imines. ChemCatChem 2010, 2,
1346−1371. (c) Nugent, T. C.; El–Shazly, M. Chiral Amine Synthesis
Reversible Dihydrogen Activation and Hydride Transfer by
a
Uranium Nitride Complex. Angew. Chem. Int. Ed. 2018, 57,
3697−3700. (b) Falcone, M.; Chatelain, L.; Scopelliti, R.; Živković,
I.; Mazzanti, M. Nitrogen Reduction and Functionalization by a
Multimetallic Uranium Nitride Complex. Nature 2017, 547, 332−335.
(c) Chatelain, L.; Scopelliti, R.; Mazzanti, M. Synthesis and Structure
of Nitride-Bridged Uranium(III) Complexes. J. Am. Chem. Soc. 2016,
138, 1784−1787. (d) King, D. M.; Tuna, F.; McInnes, E. J. L.;
McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Synthesis and
Structure of a Terminal Uranium Nitride Complex. Science 2012,
337, 717−720. (e) Seed, J. A.; Gregson, M.; Tuna, F.; Chilton, N. F.;
Wooles, A. J.; McInnes, E. J. L.; Liddle, S. T. Rare-Earth- and
Uranium-Mesoionic Carbenes: A New Class of f-Block Carbene
Complex Derived from an N-Heterocyclic Olefin. Angew. Chem. Int.
Ed. 2017, 56, 11692−11696. (f) Wildman, E. P.; Balázs, G.; Wooles,
A. J.; Scheer, M.; Liddle, S. T. Triamidoamine Thorium-Arsenic
Complexes with Parent Arsenide, Arsinidiide and Arsenido Structural
Motifs. Nature Commun. 2017, 8, 1−9. (g) Gregson, M.; Lu, E.; Mills,
D. P.; Tuna, F.; McInnes, E. J. L.; Hennig, C.; Scheinost, A. C.;
McMaster, J.; Lewis, W.; Blake, A. J.; Kerridge, A.; Liddle, S. T. The
Inverse-trans-Influence in Tetravalent Lanthanide and Actinide
bis(carbene)Complexes. Nature Commun. 2017, 8, 1−11. (h) King, D.
M.; Cleaves, P. A.; Wooles, A. J.; Gardner, B. M.; Chilton, N. F.;
Tuna, F.; Lewis, W.; McInnes, E. J. L.; Liddle, S. T. Molecular and
Electronic Structure of Terminal and Alkali Metal-Capped
Uranium(V) Nitride Complexes. Nature Commun. 2016, 7, 1−14. (i)
Gardner, B. M.; Balázs, G.; Scheer, M.; Tuna, F.; McInnes, E. J. L.;
McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Triamidoamine
Uranium(IV)–Arsenic Complexes Containing One-, Two- and
Threefold U–As Bonding Interactions. Nature Chem. 2015, 7,
582−590. (j) Liddle, S. T. Inverted Sandwich Arene Complexes of
Uranium. Coord. Chem. Rev. 2015, 293-294, 211−227. (k) La Pierre,
H. S.; Scheurer, A.; Heinemann, F. W.; Hieringer, W.; Meyer, K.
Synthesis and Characterization of a Uranium(II) Monoarene Complex
Supported by δ Backbonding. Angew. Chem. Int. Ed. 2014, 53,
7158−7162. (l) Anderson, N. H.; Odoh, S. O.; Yao, Y.; Williams, U.
J.; Schaefer, B. A.; Kiernicki, J. J.; Lewis, A. J.; Goshert, M. D.;
Fanwick, P. E.; Schelter, E. J.; Walensky, J. R.; Gagliardi, L.; Bart, S.
C. Harnessing Redox Activity for the Formation of Uranium
tris(imido)Compounds. Nature Chem. 2014, 6, 919−926. (m) Galley,
S. S.; Pattenaude, S. A.; Gaggioli, C. A.; Qiao, Y.; Sperling, J. M.;
Zeller, M.; Pakhira, S.; Mendoza-Cortes, J. L.; Schelter, E. J.;
Albrecht-Schmitt, T. E.; Gagliardi, L.; Bart, S. C. Synthesis and
Characterization of Tris-chelate Complexes for Understanding f-
Orbital Bonding in Later Actinides. J. Am. Chem. Soc 2019, 141,
2356−2366. (n) Anderson, N. H.; Xie, J.; Ray, D.; Zeller, M.;
Gagliardi, L.; Bart, S. C. Elucidating Bonding Preferences in
tetrakis(imido)Uranate(VI) Dianions. Nature Chem. 2017, 9,
850−855. (o) Coughlin, E. J.; Qiao, Y.; Lapsheva, E.; Zeller, M.;
Schelter, E. J.; Bart, S. C. Uranyl Functionalization Mediated by
Redox-Active Ligands: Generation of O–C Bonds via Acylation. J.
Am. Chem. Soc. 2019, 141, 1016−1026. (p) Mullane, K. C.; Ryu, H.;
Cheisson, T.; Grant, L. N.; Park, J. Y.; Manor, B. C.; Carroll, P. J.;
Baik, M.-H.; Mindiola, D. J.; Schelter, E. J. C–H Bond Addition
Across a Transient Uranium–Nitrido Moiety and Formation of a
Parent Uranium Imido Complex. J. Am. Chem. Soc. 2018, 140,
11335−11340. (q) Mullane, K. C.; Cheisson, T.; Nakamaru-Ogiso, E.;
Manor, B. C.; Carroll, P. J.; Schelter, E. J. Reduction of Carbonyl
Groups by Uranium(III) and Formation of a Stable Amide Radical
Anion. Chem. Eur. J. 2018, 24, 826−837. (r) Mullane, K. C.; Carroll,
P. J.; Schelter, E. J. Synthesis and Reduction of Uranium(V) Imido
Complexes with Redox‐Active Substituents. Chemistry, Eur. J. 2017,
23, 5748−5757. (s) Monreal, M. J.; Seaman, L. A.; Goff, G. S.;
Michalczyk, R.; Morris, D. E.; Scott, B. L.; Kiplinger, J. L. New
Twists and Turns for Actinide Chemistry: Organometallic Infinite
Coordination Polymers of Thorium Diazide. Angew. Chem. Int. Ed.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
–
Recent Developments and Trends for Enamide Reduction,
Reductive Amination, and Imine Reduction. Adv. Synth. Catal. 2010,
352, 753−819. (d) Fabrello, A.; Bachelier, A.; Urrutigoïty, M.; Kalck,
P. Mechanistic Analysis of the Transition Metal-Catalyzed
Hydrogenation of Imines and Functionalized Enamines. Coord.
Chem. Rev. 2010, 254, 273−287. (e) Xie, J.–H.; Zhu, S.–F.; Zhou, Q.–
L. Transition Metal-Catalyzed Enantioselective Hydrogenation of
Enamines and Imines. Chem. Rev. 2011, 111, 1713−1760. (f)
Bartoszewicz, A.; Ahlsten, N.; Martìn–Matute, B. Enantioselective
Synthesis of Alcohols and Amines by Iridium‐Catalyzed
Hydrogenation, Transfer Hydrogenation, and Related Processes.
Chem. – Eur. J. 2013, 19, 7274−7302. (g) Tang, W.; Xiao, J.
Asymmetric Hydrogenation of Imines via Metal–Organo Cooperative
Catalysis. Synthesis 2014, 46, 1297−1302. (h) Hopmann, K. H.;
Bayer, A. Enantioselective Imine Hydrogenation with Iridium-
Catalysts: Reactions, Mechanisms and Stereocontrol. Coord. Chem.
Rev. 2014, 268, 59−82. (i) Yang, Q.; Shang, G.; Gao, W.; Deng, J.;
Zhang, X.
A Highly Enantioselective, Pd-TangPhos-Catalyzed
Hydrogenation of N-Tosylimines. Angew. Chem. Int. Ed. 2006, 45,
3832−3835.
(17) Baker, R. T.; Calabrese, J. C.; Westcott, S. A. Coinage Metal-
Catalyzed Hydroboration of Imines. J. Organomet. Chem. 1995, 498,
109−117.
(18) (a) Chong, C. C.; Kinjo, R. Catalytic Hydroboration of Carbonyl
Derivatives, Imines, and Carbon Dioxide. ACS Catal. 2015, 5,
3238−3259. (b) Arrowsmith, M.; Hill, M. S.; Kociok–Köhn, G.
Magnesium Catalysis of Imine Hydroboration. Chem. – Eur. J. 2013,
19, 2776−2783. (c) Koren–Selfridge, L.; Londino, H. N.; Vellucci, J.
K.; Simmons, B. J.; Casey, C. P.; Clark, T. B. A Boron-Substituted
Analogue of the Shvo Hydrogenation Catalyst: Catalytic
Hydroboration of Aldehydes, Imines, and Ketones. Organometallics
2009, 28, 2085−2090. (d) King, A. E.; Stieber, S. C. E.; Henson, N.
J.; Kozimor, S. A.; Scott, B. L.; Smythe, N. C.; Sutton, A. D.;
Gordon, J. C. Ni(bpy)(cod): A Convenient Entryway into the Efficient
Hydroboration of Ketones, Aldehydes, and Imines. Eur. J. Inorg.
Chem. 2016, 2016, 1635−1640. (e) Eisenberger, P.; Bailey, A. M.;
Crudden, C. M. Taking the F out of FLP: Simple Lewis Acid–Base
Pairs for Mild Reductions with Neutral Boranes via Borenium Ion
Catalysis. J. Am. Chem. Soc. 2012, 134, 17384−17387. (f) Vogels, C.
M.; O’Connor, P. O.; Phillips, T. E.; Watson, K. J.; Shaver, M. P.;
Hayes, P. G.; Westcott, S. A. Rhodium-Catalyzed Hydroborations of
Allylamine and Allylimines. Can. J. Chem. 2001, 79, 1898−1905. (g)
Yan, D.; Wu, X.; Xiao, J.; Zhu, Z.; Xu, X.; Bao, X.; Yao, Y.; Shena,
Q.; Xue, M. n-Butyllithium Catalyzed Hydroboration of Imines and
Alkynes. Org. Chem. Front. 2019, 6, 648−653. (h) Huchenskia, B. S.
N.; Speed, A. W. H. Protic Additives or Impurities Promote Imine
Reduction with Pinacolborane. Org. Biomol. Chem. 2019, 17,
1999−2004. (i) Arévalo, R.; Vogels, C. M.; MacNeil, G. A.; Riera, L.;
Pérez, J.; Westcott, S. A. Rhenium-Catalysed Hydroboration of
Aldehydes and Aldimines. Dalton Trans. 2017, 46, 7750−7757. (j)
Yin, Q.; Soltani, Y.; Melen, R. L.; Oestreich, M. BArF -Catalyzed
3
Imine Hydroboration with Pinacolborane Not Requiring the
Assistance of an Additional Lewis Base. Organometallics 2017, 36,
2381−2384. (k) Pollard, V. A.; Fuentes, M. A.; Kennedy, A. R.;
McLellan, R.; Mulvey, R. E. Comparing Neutral (Monometallic) and
Anionic (Bimetallic) Aluminum Complexes in Hydroboration
ACS Paragon Plus Environment