ORGANIC
LETTERS
2013
Vol. 15, No. 9
2286–2289
Palladium-Catalyzed Formal
Hydroacylation of Allenes Employing Acid
Chlorides and Hydrosilanes
Tetsuaki Fujihara, Kenta Tatsumi, Jun Terao, and Yasushi Tsuji*
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering,
Kyoto University, Kyoto 615-8510, Japan
Received March 29, 2013
ABSTRACT
The palladium-catalyzed formal hydroacylation of allenes employing acid chlorides and hydrosilanes has been achieved. The reactions proceed
with commercially available Pd(OAc)2 as a catalyst and HSi(iPr)3 as a reducing reagent, giving the corresponding R,β-unsaturated ketones regio-
and stereoselectively.
The addition of aldehydes to carbonÀcarbon multiple
bonds, namely hydroacylation, is a useful synthetic method to
produce unsymmetrical ketones.1 However, intermolecular
additions of aldehydes to carbonÀcarbon multiple bonds
such as alkenes or alkynes often suffer from low selectivity
and low yields. To ensurehighefficiency, (i) intramolecular
addition,2 (ii) carbon monoxide pressure,3 (iii) substrates
having proper directing groups,1c,d,4 and (iv) oxidative or
reductive formal hydroacylation employing alcohols1b,5 or
anhydrides6 as acyl donors were often indispensable.
Meanwhile, oxidative addition of acid chlorides to a
metal center is a more facile step than that of aldehydes.7
Thus, acid chlorides were utilized as promising substrates
(1) For reviews, see: (a) Willis, M. C. Chem. Rev. 2010, 110, 725–748.
(b) Leung, J. C.; Krische, M. J. Chem. Sci. 2012, 3, 2202–2209. (c) Park,
Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222–234. (d) Jun,
C.-H.; Jo, E.-A.; Park, J.-W. Eur. J. Org. Chem. 2007, 1869–1881. (e) Fu,
G. C. In Modern Rhodium-Catalyzed Organic Reactions; Evans, A., Ed.;
Wiley-VCH: Weinheim, 2005; pp 79À91.
(2) Selected examples for intramolecular hydroacylations, see: (a)
Hoshimoto, Y.; Hayashi, Y.; Suzuki, H.; Ohashi, M.; Ogoshi, S. Angew.
Chem., Int. Ed. 2012, 51, 10812–10815. (b) Coulter, M. M.; Dornan,
P. K.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 6932–6933. (c) Kundu,
K.; McCullagh, J. V.; Morehead, A. T., Jr. J. Am. Chem. Soc. 2005, 127,
16042–16043. (d) Sato, Y.; Ohnishi, Y.; Mori, M. Angew. Chem., Int. Ed.
2002, 41, 1218–1221. (e) Tanaka, K.; Fu, G. C. J. Am. Chem. Soc. 2003,
125, 8078–8079. (f) Tanaka, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123,
11492–11493. (g) Larock, R. C.; Oertle, K.; Potter, G. F. J. Am. Chem.
Soc. 1980, 102, 190–197.
(5) Selected examples for oxidative and reductive formal hydroacyla-
tions, see: (a) Han, S. B.; Kim, I.-S.; Han, H.; Krische, M. J. J. Am.
Chem. Soc. 2009, 131, 6916–6917. (b) Bower, J.; Skucas, E.; Patman,
R. L.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134–15135. (c)
Skucas, E.; Bower, J.; Krische, M. J. J. Am. Chem. Soc. 2007, 129,
12678–12679. (d) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am.
Chem. Soc. 2008, 130, 14120–14122. (e) Shibahara, F.; Bower, J. F.;
Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6338–6339. (f) Patman,
R. L.; Chaulagain, M. R.; Williams, V. M.; Krische, M. J. J. Am. Chem.
Soc. 2009, 131, 2066–2067. (g) Omura, S.; Fukuyama, T.; Horiguchi, J.;
Murakami, Y.; Ryu, I. J. Am. Chem. Soc. 2008, 130, 14094–14095.
(h) Hatanaka, S.; Obora, Y.; Ishii, Y. Chem.;Eur. J. 2010, 16, 1883–
1888.
(6) Hong, Y. -T.; Barchuk, A.; Krische, M. J. Angew. Chem., Int. Ed.
2006, 45, 6885–6888.
(7) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G.
Principles and Applications of Organotransition Metal Chemistry; Uni-
versity Science Books: Mill Valley, CA, 1987; Chapter 5.
(8) (a) Yang, F.-Y.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc.
2000, 122, 7122–7123. (b) Yang, F.-Y.; Shanmugasundaram, M.;
Chuang, S.-Y.; Ku, P.-J.; Wu, M.-Y.; Cheng, C.-H. J. Am. Chem. Soc.
2003, 125, 12576–12583.
(3) (a) Kondo, T.; Akazome, M.; Tsuji, Y.; Watanabe, Y. J. Org.
Chem. 1990, 55, 1286–1291. (b) Kondo, T.; Tsuji, Y.; Watanabe, Y.
Tetrahedron Lett. 1987, 28, 6229–6230.
(4) Selected examples for chelation-assisted hydroacylations, see: (a)
von Delius, M.; Le, C. M.; Dong, V. M. J. Am. Chem. Soc. 2012, 134,
15022–15032. (b) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong,
V. M. J. Am. Chem. Soc. 2010, 132, 16330–16333. (c) Murphy, S. K.;
Petrone, D. A.; Coulter, M. M.; Dong, V. M. Org. Lett. 2011, 13, 6216–
6219. (d) Zhang, H.-J.; Bolm, C. Org. Lett. 2011, 13, 3900–3903. (e)
Chaplin, A. B.; Hooper, J. F.; Weller, A. S.; Wills, M. C. J. Am. Chem.
Soc. 2012, 134, 4885–4897. (f) Moxham, G. L.; Randell-Sly, H. E.;
Brayshaw, S. K.; Weller, A. S.; Willis, M. C. Chem.;Eur. J. 2008, 14,
8383–8397. (g) Osborne, J. D.; Willis, M. C. Chem. Commun. 2008,
5025–5027. (h) Moxham, G. L.; Randell-Sly, H. E.; Brayshaw, S. K.;
Woodward, R. L.; Weller, A. S.; Willis, M. C. Angew. Chem., Int. Ed.
2006, 45, 7618–7622.
r
10.1021/ol400862k
Published on Web 04/22/2013
2013 American Chemical Society