March 2013
1,3-Dipolar Cycloaddition of 4-Chlorobenzonitrile Oxide with Some Dipolarophiles:
Theoretical Analysis of Regioselectivity
193
(M+ + 2). 1H NMR (400 MHz, CDCl3): δH 2.10 (3H, s, CH3), 3.34
(1H, dd, CHAHB, J = 1.60 Hz, J = 16.40 Hz), 3.61 (1H, dd,
CHAHB, J = 6.80 Hz, J = 10.80 Hz), 6.85 (1H, dd, CH, J = 1.60
Hz, J = 5.20 Hz), 7.42 (2H, d, CH-Ar, J = 8.40 Hz), 7.66 (2H, d,
CH-Ar, J = 8.40 Hz). 13C NMR (CDCl3), δC: 21.0, 41.2, 96.0,
126.8, 128.3, 129.2, 136.9, 156.1, 169.7. Anal. Calcd for
C11H10ClNO3: C, 55.13; H, 4.21; N, 5.84%. Found: C, 54.73; H,
4.27; N, 6.73%.
5-(Bromomethyl)-3-(4-chlorophenyl)-4,5-dihydroisoxazole
(8a). This compound was obtained as white powder (83%). m.
p. 97-98°C. IR (KBr) (νmax/cm−1): 1600. MS (EI, 70 eV) m/z:
273 (M+), 275 (M+ + 2). 1H NMR (400 MHz, CDCl3): δH
3.31(1H, dd, CHAHB, J = 6.40 Hz, J = 10.40 Hz), 3.44 (1H,
dd, CHAHB, J = 8.40 Hz, J = 2.40 Hz), 3.51 (1H, dd, CHAHB,
J = 10.40 Hz, J = 6.80 Hz), 3.60 (1H, dd, CHAHB, J = 4.40
Hz, J = 6.00 Hz), 5.04 (1H, m, CH), 7.40 (2H, d, CH-Ar,
J = 8.80 Hz), 7.62 (2H, d, CH-Ar, J = 8.80 Hz). 13C NMR
(CDCl3), δC: 33.4, 39.5, 79.9, 127.5, 128.0, 129.1, 136.4,
155.2. Anal. Calcd for C10H9BrClNO: C, 43.75; H, 3.30; N,
5.10%. Found: C, 43.72; H, 3.30; N, 5.22%.
[8] Shang, Y. J.; Wang, Y. G. Synthesis 2002, 1663.
[9] Shankar, B. B.; Yang, D. Y.; Girton, S.; Ganguly, A. K. Tetra-
hedron Lett 1998, 39, 2447.
[10] Wolinski, K.; Hilton, J. F.; Pulay, P. J Am Chem Soc 1990,
112, 8251.
[11] García-Granados, A.; Melguizo, E.; Parra, A. J Org Chem
2000, 65, 8214.
[12] Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R.
Tetrahedron 2002, 58, 4417.
[13] Pérez, P.; Domingo, L. R.; Aurell, M. J.; Contreras, R.
Tetrahedron 2003, 59, 3117.
[14] Frisch, M. J., et al. Gaussian 98, Revision A.7, Gaussian Inc.,
Pittsburgh, PA, 1998.
[15] Schlegel, H. B. J Comput Chem 1982, 3, 214.
[16] Parr, R. G.; Szentpály, L. V.; Liu, S. J Am Chem Soc 1999,
121, 1922.
[17] Parr, R. G.; Yang, W. Density Functional Theory of Atoms
and Molecules; Oxford University Press: New York, 1989.
[18] Parr, R. G.; Pearson, R. G. J Am Chem Soc 1983, 105, 7512.
[19] Yang, W.; Mortier, W. J. J Am Chem Soc 1986, 108,
5708.
[20] Fukui, K. Science 1982, 218, 747.
[21] Contreras, R.; Fuentealba, P.; Galván, M.; Pérez, P. Chem
Phys Lett 1999, 304, 405.
[22] Domingo, L. R.; Aurell, M. J.; Pérez, P. J Phys Chem A 2002,
106, 6871.
REFERENCES AND NOTES
[23] Domingo, L. R.; Pérez, P. J Org Chem 2008, 73, 4615.
[24] Pérez, P.; Domingo, L. R.; Duque-Noreña, M.; Chamorro, E. J
Mol Struc (Theochem) 2009, 895, 86.
[25] Jesson, J. P.; Thompson, H. W. Spectrochim Acta 1958, 13,
217.
[26] Butt, G.; Cilmi, J.; Hooben, P. M.; Topsom, R. D. Spectrochim
Acta Mol Spectrosc 1980, 36A, 521.
[27] Abunada, N. M.; Hassaneen, H. M.; Kandile, N. G.; Miqdad,
O. A. Molecules 2008, 13, 1011.
[28] Wiberg, K. B. Tetrahedron 1968, 24, 1083.
[29] Hammond, G. S. J Am Chem Soc 1955, 77, 334.
[30] Schoffstall, A.; Gaddis, B.; Druelinger, M. Microscale and
Miniscale Organic Chemistry Laboratory Experiments; Mc Graw Hill:
London, 2004.
[1] Gothelf, K. V.; Jorgensen, K. A. Chem Rev 1998, 98, 863.
[2] Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New
York, 1984.
[3] Wasserman, A. Diels–Alder Reactions; Elsevier: NewYork,
1965.
[4] Fleming, I. Pericyclic Reactions; Oxford University: Oxford,
1999.
[5] Gothelf, K. V. Asymmetric Metal-Catalysed 1,3-Dipolar
Cycloaddition Reactions; Wiley-VCH: Weinheim, 2001.
[6] Fleming, I. Frontiers Orbitals and Organic Chemical
Reactions; Wiley: London, 1976.
[7] Kang, K. H.; Pae, A. N.; Choi, K. I.; Cho, Y. S.; Chung, B. Y.; Lee,
J. E.; Jung, S. H.; Koh, H. Y.; Lee, H. Y. Tetrahedron Lett 2001, 42, 1057.
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet