Organic & Biomolecular Chemistry
Paper
3 C. B. Kelly, K. M. Lambert, M. A. Mercadante, J. M. Ovian,
W. F. Bailey and N. E. Leadbeater, Angew. Chem., Int. Ed.,
2015, 54, 4241.
4 J. M. Ovian, C. B. Kelly, V. A. Pistritto and N. E. Leadbeater,
Org. Lett., 2017, 19, 1286.
5 For reviews, see: (a) X. Bao, W. Jiang, J. Liang and C. Huo,
Org. Chem. Front., 2020, 7, 2107; (b) Z. Ma,
K. T. Mahmudov, V. A. Aliyeva, A. V. Gurbanov and
A. J. L. Pombeiro, Coord. Chem. Rev., 2020, 423, 213482;
(c) C. Y. Huang, H. Kang, J. Li and C. J. Li, J. Org. Chem.,
2019, 84, 12705; (d) A. Gini, T. Brandhofer and O. Garcia-
Mancheño, Org. Biomol. Chem., 2017, 15, 1294;
(e) O. Garcia-Mancheño and T. Stopka, Synthesis, 2013, 45,
1602.
6 C. B. Kelly, M. A. Mercadante, R. J. Wiles and
N. E. Leadbeater, Org. Lett., 2013, 15, 2222.
7 (a) B. A. Tschaen, J. R. Schmink and G. A. Molander, Org.
Lett., 2013, 15, 500; (b) A. L. Bartelson, Novel Reactions of
Oxoammonium Salts in the Presence of Base, Graduate
Thesis, University of Connecticut, Storrs, CT, 2011.
8 (a) C. L. Kelly and N. E. Leadbeater, Int. J. Adv. Res. Chem.
Sci., 2016, 3, 27; (b) J.-M. Vatèle, Synlett, 2015, 2280.
9 X. Fang, J. Li and C. J. Wang, Org. Lett., 2013, 15,
3448.
10 (a) T. Kano, F. Shirozu, M. Akakura and K. Maruoka, J. Am.
Chem. Soc., 2012, 134, 16068; (b) K. Inanaga, K. Takasu and
M. Ihara, J. Am. Chem. Soc., 2004, 126, 1352;
(c) Y. Iwabuchi, M. Nakatani, N. Yokoyama and
S. Hatakeyama, J. Am. Chem. Soc., 1999, 121, 10219.
11 B. E. Smart, J. Fluorine Chem., 2001, 109, 3.
12 S. Takahashi and L. A. Cohen, J. Org. Chem., 1970, 35,
1505.
Fig. 4 Envisioned catalytic cycle for oxidative esterification.
Conclusion
In summary, a simple, metal-free route for the oxidative esteri-
fication of aldehydes to yield hexafluoroisopropyl esters is pre-
sented. The methodology employs sodium persulfate as the
primary oxidant and a catalytic quantity of a nitroxide as an
additive. It can be applied to aromatic, heteroaromatic, and
aliphatic aldehyde substrates.
13 B. Tan, N. Toda and C. F. Barbas, Angew. Chem., Int. Ed.,
2012, 51, 12538.
Conflicts of interest
14 Y. Wang and V. Gevorgyan, Angew. Chem., Int. Ed., 2017, 56,
3191.
There are no conflicts to declare.
15 K. Imai, Z. Tamura, F. Mashige and T. Osuga,
J. Chromatogr., 1976, 120, 181.
Acknowledgements
16 For discussion of the comproportionation reactions of
oxoammonium salts, see: T. A. Hamlin, C. B. Kelly,
J. M. Ovian, R. J. Wiles, L. J. Tilley and N. E. Leadbeater,
J. Org. Chem., 2015, 80, 8150.
17 J. M. Bobbitt, A. L. Bartelson, W. F. Bailey, T. A. Hamlin
and C. B. Kelly, J. Org. Chem., 2014, 79, 1055.
This research was funded by the University of Connecticut
Research Enhancement Program (FP) and Office of
Undergraduate Research (MLW).
18 For reviews on photoredox catalysis see: (a) J. Twilton,
C. Le, P. Zhang, M. H. Shaw, R. W. Evans and
D. W. C. MacMillan, Nat. Rev. Chem., 2017, 1, 52;
(b) M. H. Shaw, J. Twilton and D. W. C. Macmillan, J. Org.
Chem., 2016, 81, 6898; (c) N. A. Romero and D. A. Nicewicz,
Chem. Rev., 2016, 116, 10075; (d) C. K. Prier, D. A. Rankic
and D. W. C. Macmillan, Chem. Rev., 2013, 113, 5322;
(e) J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc.
Rev., 2011, 40, 102.
Notes and references
1 For an overview, see: N. E. Leadbeater and J. M. Bobbitt,
Aldrichimica Acta, 2014, 47, 65.
2 For reviews, see: (a) M. Shibuya, Tetrahedron Lett., 2020, 61,
151515; (b) H. A. Beejapur, Q. Zhang, K. Hu, L. Zhu,
J. Wang and Z. Ye, ACS Catal., 2019, 9, 2777; (c) L. Tebben
and A. Studer, Angew. Chem., Int. Ed., 2011, 50, 5034;
(d) R. Ciriminna and M. Pagliaro, Org. Process Res. Dev., 19 For reviews on some photoredox dual catalytic processes
2010, 14, 245; (e) J. M. Bobbitt, C. Brückner and
N. Merbouh, Org. React., 2009, 74, 103.
see: (a) J. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy,
N. R. Patel and G. A. Molander, Acc. Chem. Res., 2016, 49,
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 2986–2990 | 2989