144
M.S. Jana et al. / Inorganica Chimica Acta 399 (2013) 138–145
Appendix A. Supplementary material
CCDC 867934 contains the supplementary crystallographic data
for [Re(CO)3(L2)Cl] (1a). These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at http://
References
[1] C. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 97 (1997) 2005.
[2] U. Knof, A. von Zelewsky, Angew. Chem., Int. Ed. 38 (1999) 303.
[3] K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 177 (1998) 347.
[4] V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 96 (1996)
759.
[5] M. Gratzel, Energy Resources Through Photochemistry and Catalysis,
Academic, New York, 1983.
ˇ
[6] I.R. Farrell, A. Vlcek Jr., Coord. Chem. Rev. 208 (2000) 87.
[7] A. Vogler, H. Kunkely, Coord. Chem. Rev. 200–202 (2000) 991.
ˇ
[8] A. Vlcek Jr., M. Busby, Coord. Chem. Rev. 250 (2006) 1755.
[9] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, J. Shen, Appl. Phys. Lett.
83 (2003) 4716.
[10] S.S. Jurisson, J.D. Lydon, Chem. Rev. 99 (1999) 2205.
[11] W.A. Volkert, T.J. Hoffman, Chem. Rev. 99 (1999) 2269.
[12] W.B. Connick, A. Di Bilio, M.G. Hill, J.R. Winkler, H.B. Gray, Inorg. Chim. Acta
240 (1995) 169.
[13] K.K.-W. Lo, K.H.-K. Tsang, W.K. Hui, N. Zhu, Chem. Commun. (2003) 2704.
[14] A.R. Dunn, W. Belliston-Bittner, J.R. Winkler, E.D. Getzoff, D.J. Stuehr, H.B. Gray,
J. Am. Chem. Soc. 127 (2005) 5169.
Fig. 8. Cyclic voltammogram of 1a in acetonitrile.
amplitude of decay process) to study the excited state stability of
the complexes. The fluorescence lifetime of the ligands is in the
range 2.97–3.03 ns and for complexes 4.21–4.49 ns.
[15] K. Wang, L. Huang, L. Gao, L. Jin, C. Huang, Inorg. Chem. 41 (2002) 3353.
[16] Z. Si, J. Li, B. Li, F. Zhao, S. Liu, W. Li, Inorg. Chem. 46 (2007) 6155.
ˇ
[17] B.D. Rossenaar, D.J. Stufkens, A. Vlcek Jr., Inorg. Chem. 35 (1996) 2902.
ˇ
[18] B.D. Rossenaar, E. Lindsay, D.J. Stufkens, A. Vlcek Jr., Inorg. Chim. Acta 250
3.5. Electrochemistry
(1996) 5.
ˇ
[19] D.J. Stufkens, A. Vlcek Jr., Coord. Chem. Rev. 177 (1998) 127.
The complexes show one irreversible oxidative response at
1.12–1.15 V when scanned in the potential range 0.0 to 2.0 V which
is assigned as Re(II)/Re(I) oxidation as HOMO of 1a has 44% contri-
[20] K.K.-W. Lo, W.-K. Hui, C.-K. Chung, K.H.-K. Tsang, T.K.-M. Lee, C.-K. Li, J.S.-Y.
Lau, D.C.-M. Ng, Coord. Chem. Rev. 250 (2006) 1724.
[21] R.A. Kirgan, B.P. Sullivan, D.P. Rillema, Top. Curr. Chem. 281 (2007) 45.
[22] A. Juris, S. Campagna, I. Bidd, J.-M. Lehn, R. Ziessel, Inorg. Chem. 27 (1988)
4007.
bution of Re(dp) orbitals (Fig. 8). In addition one irreversible reduc-
[23] L.D. Ciana, W.J. Dressick, D. Sandrini, M. Maestri, M. Ciano, Inorg. Chem. 29
(1990) 2792.
[24] L. Wallace, D.P. Rillema, Inorg. Chem. 32 (1993) 3836.
[25] S.R. Stoyanov, J.M. Villegas, D.P. Rillema, Inorg. Chem. 41 (2002) 2941.
[26] R.A. Allred, S.A. Hufner, K. Rudzka, A.M. Arif, L.M. Berreau, Dalton Trans. (2007)
351.
tion peak at around ꢀ(1.19–1.22) V has been observed for the
complexes. The LUMO of complex 1a has 92% p⁄(L) character and
the reduction is assigned as ligand centered. The nature of voltam-
mogram does not change with scan rate (50–250 mV Sꢀ1).
[27] M.R. Malachonsk, M. Adams, N. Elia, A.L. Rheingold, R.S. Kelly, J. Chem. Soc.,
Dalton Trans. (1999) 2177.
[28] B. Adhikary, S. Liu, C.R. Lucas, Inorg. Chem. 32 (1993) 5957.
[29] P. Chakraborty, S.K. Chandra, A. Chakravorty, Inorg. Chem. 32 (1993) 5349.
[30] A. Karmakar, S.B. Chaoudhury, A. Chakrovorty, Inorg. Chem. 33 (1994) 6148.
[31] K. Pramanik, S. Karmakar, S.B. Choudhury, A. Chakravorty, Inorg. Chem. 36
(1997) 3562.
[32] S. Mukhopadhyay, D. Ray, J. Chem. Soc., Dalton Trans. (1995) 265.
[33] A.K. Singh, R. Mukherjee, Dalton Trans. (2005) 2886.
[34] F. Thomas, Eur. J. Inorg. Chem. (2007) 2379.
[35] L. Zhou, D. Powell, K.M. Nicholas, Inorg. Chem. 46 (2007) 7789.
[36] M. Rombach, J. Seebacher, M. Ji, G. Zhang, G. He, M.M. Ibrahim, B. Benkmil, H.
Vahrenkamp, Inorg. Chem. 45 (2006) 4571.
[37] L.M. Berreau, Eur. J. Inorg. Chem. (2006) 273.
[38] M.K. Paira, T.K. Mondal, D. Ojha, A.M.Z. Slawin, E.R.T. Tiekink, A. Samanta, C.
Sinha, Inorg. Chim. Acta 370 (2011) 175.
[39] B. Valuer, Molecular Fluorescence. Principles and Applications, Wiley-VCH,
Weinheim, 2001.
[40] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[41] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[42] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77
(1990) 123.
[43] P. Fuentealba, H. Preuss, H. Stoll, L.V. Szentpaly, Chem. Phys. Lett. 89 (1989)
418.
4. Conclusion
New pyridyl Schiff base ligands (L1/L2) containing thioether
group have been synthesized and characterized. The rhenium car-
bonyl complexes containing the {Re(CO)3}+ fragment and Schiff
base ligands (L1/L2) with general formula fac-[Re(CO)3(L1/L2)Cl]
(1a/1b) have been synthesized and characterized by both experi-
mental and theoretical studies. X-ray and IR studies confirm the fa-
cial geometry of the carbonyl ligand in the complexes. The
electrochemical properties of the complexes have been examined
and supported by DFT data. The spin allowed electronic transitions
computed by TDDFT method have a good agreement with the
experimental spectra. The ILCT based emission properties and ex-
cited state stability of the complexes have been studied by quan-
tum yield calculation and lifetime measurement.
[44] GAUSSIAN 03, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C.
Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J. J.
Dannenberg, V. G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas,
D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G.
Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Acknowledgments
Financial support received from the Department of Science and
Technology, New Delhi, India (No. SR/FT/CS-73/2010) is gratefully
acknowledged. Special thanks to Prof. C. Sinha, Department of
Chemistry, Jadavpur University, Kolkata, India for his constant
help. M.S. Jana, A.K. Pramanik, S. Kundu and D. Sarkar are thankful
to CSIR, New Delhi, India for fellowship.