N. Galy et al. / Tetrahedron Letters 54 (2013) 2703–2705
2705
[H-EIM][TfO], Ionic Liquid
O
TfO
N Et
TfO
Et
H
N
N
N
Et N
N
O
O
O
R3
N
TfO
5
S
CF3
2
CBEIT 1
H3N
Et
COOMe
R1
N
O
R1
O
R1
TfO
O
H2N
Et
[H-EIM][TfO]
COOH
CBEIT
H
N
CBEIT 1
R2OH
COOMe
R2O
N
H
COOH
R2O
N
R2O
N
N
H
O
R3
4, R2 = Ph or t-Bu
(Z or BOC)
3
[H-EIM][TfO]
3 [H-EIM][TfO]
Figure 2. ‘Waste-free’ peptide synthesis.
V., Plaquevent, J.-C., Gruttadauria, M., Giacalone, F., Eds.; Wiley, 2011. Chapter
7.
enantiopure amino acids both in C- and N-terminal positions, and
checked that no racemization occurred (as controlled by optical
rotation and chiral HPLC, see Supplementary data). Of course,
[H-EIM][TfO] 2 was recovered and purified by standard procedure
(60–70% unoptimized yield): it can be used either as an ionic
solvent for further applications or recycled as starting material
for recovery of ethyl imidazole or CBEIT 1.
3. Durand, J.; Teuma, E.; Gomez, M. C. R. Chimie 2007, 152–177.
4. Isambert, N.; del Mar Sanchez Duque, M.; Plaquevent, J.-C.; Génisson, Y.;
Rodriguez, J.; Constantieux, T. Chem. Soc. Rev. 2011, 40, 1347–1357.
5. For a pertinent and stimulating discussion, see: Kent, S. Angew. Chem., Int. Ed.
2006, 45, 4234 (About: Benoiton, N. L. Chemistry of Peptide Synthesis, CRC
Taylor & Francis Group: Andover, 2005).
6. Overview of modern approaches and prospects in peptide synthesis: Albericio,
F. Curr. Opin. Chem. Biol. 2004, 8, 211–221; Review on protease-catalyzed
peptide synthesis: Lombard, C.; Saulnier, J.; Wallach, J. M. Protein Pept. Lett.
2005, 12, 621–629; Review about amino acid-protecting groups: Isidro-Llobet,
A.; Alvarez, M.; Albericio, F. Chem. Rev. 2009, 109, 2455–2504; Review about
peptide coupling reagents: Ayman El-Faham, A.; Albericio, F. Chem. Rev. 2011,
111, 6557–6602; Chemical modifications of peptides: Van Lancker, F.; Adams,
A.; De Kimpe, N. Chem. Rev. 2011, 111, 7876–7903; Total synthesis of proteins:
Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338–351.
7. (a) Vallette, H.; Ferron, L.; Coquerel, G.; Gaumont, A.-C.; Plaquevent, J.-C.
Tetrahedron Lett. 2004, 45, 1617–1619; (b) Vallette, H.; Ferron, L.; Coquerel, G.;
Guillen, F.; Plaquevent, J.-C. ARKIVOC 2006, 200–211; (c) Guillen, F.; Brégeon,
D.; Plaquevent, J.-C. Tetrahedron Lett. 2006, 47, 1245–1248; (d) Ternois, J.;
Ferron, L.; Coquerel, G.; Guillen, F.; Plaquevent, J.-C. ACS Symp. Ser. 2010, 1038,
13–24.
8. (a) Plaquevent, J.-C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A.-C. Chem.
Rev. 2008, 108, 5035–5060; (b) Tietze, A. A.; Heimer, P.; Stark, A.; Imhof, D.
Molecules 2012, 17, 4158–4185.
In the following Figure 2 is summarized the full strategy for
waste-free peptide coupling.
Finally, we show that ionic coupling reagents such as CBEIT 1
could be perfect tools for efficient and ‘waste-free’ peptide synthe-
sis, since the only by-products are carbon dioxide and an ionic li-
quid that acts as the solvent. Not only the peptide coupling
reaction itself is realized under such conditions, but also the re-
quired protections of the starting amino acids. Our current studies
focus on the direct coupling of unprotected amino acids, which we
expect to be possible thanks to the liberated ionic liquid able to
dissolve amino acids.
Supplementary data
9. For part 2 of this series, see Jebri, K.; Mazières, M.-R.; Ballereau, S.; Ben Ayed, T.;
Baltas, M.; Plaquevent, J.-C., ‘Mukaiyama coupling in ionic liquids: from
Supplementary data associated with this article can be found,
ulosonic series to
liquids only’, in press.
a-oxo c-thio-esters via unprecedented synthesis in ionic
10. (a) Saha, A. K.; Schultz, P.; Rapoport, H. J. Am. Chem. Soc. 1989, 111, 4856–4859;
(b) Gibson, F. S.; Rapoport, H. J. Org. Chem. 1995, 60, 2615–2617.
11. Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.; Sun, D. Green Chem. 2004, 6, 75–
77.
12. (a) Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. J. Phys. Chem. Ref. Data 2006, 35,
1475–1517; (b) Ohno, H.; Yoshikawa, M. Solid State Ionics 2002, 154–155, 303–
309.
13. The moderate yield observed in the first set of experiments was due to the
in situ formation of glycine anhydride. Although this intermediate was also
coupled with leucine ester, yield was hampered because of the loss of one
glycine unit during this process.
References and notes
1. (a)Ionic Liquids in Synthesis; Wasserscheid, P., Welton, T., Eds., 2nd ed.; Wiley-
VCH: Weinheim, 2008; (b) Hallet, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508–
3576.
2. (a) Baudequin, C.; Plaquevent, J.-C.; Audouard, C.; Cahard, D. Green Chem. 2002,
4, 584–586; (b)Catalytic Methods in Asymmetric Synthesis: Advanced Materials,
Techniques, and Applications; Gaumont, A.-C., Génisson, Y., Guillen, F., Zgonnik,