In assessing various methods, we noticed that few meth-
ods provided products with easily manipulated protecting
groups while simultaneously setting both stereocenters in
a single transformation. We believed that these synthetic
issues might be addressable using chemistry previously
developed in our laboratories. Herein we describe the
application of a recently discovered Ru-catalyzed dy-
namic kinetic resolution-asymmetric transfer hydrogenation
(DKR-ATH) that provides facile access to enantioenriched
β-amino-R-hydroxy esters.
into in situ formed imines (Scheme 2). The requisite
carbamates 3a and 3b were obtained in low and variable
yields.16
Scheme 2. Aza-benzoin Addition Using Ethyl Glyoxylate
Our group has shown that various β-substituted-R-keto
esters are reduced with high stereoselectivity under DKR-
ATH conditions.10 These examples provided the basis
of a hypothesis that β-amino-R-hydroxy-esters could be
accessed from racemic β-amino-R-keto esters via dynamic
kinetic resolution (Scheme 1). Such reactions are well-
established for the isomeric R-amino-β-keto esters and
in fact comprise prototypical examples of DKR,11 but
extensions to the β-amino-R-keto esters remain limited to
enzymatic catalysis.12
Although inefficient at the present level of optimization,
this method provided us with sufficient amounts of mate-
rial with which to examine the DKR-ATH for proof
of concept. Guided by our previous work,10 we began by
screening catalyst complexes 5ꢀ7 which arise from diaryl-
ethylene diamine monosulfonamide ligands and [RuCl2-
(p-cymene)]2.17 The use of complex 5 afforded complete
anti diastereoselection18 but moderate enantioselectivity,
necessitating a switch to complexes 6 and 7, both of which
bear a terphenyl sulfonamide. Complex 6 provided high
Scheme 1. Proposed ATH-DKR of β-Amino-R-keto Esters
Table 1. Optimization of ATH-DKR for β-Amino-R-keto Esters
In principle, the most atom-efficient route toward the
requisite β-amino-R-keto esters would be to use a glyoxy-
late aza-benzoin reaction mediated by an N-heterocyclic
carbene (NHC) catalyst. This umpolung reactivity has
precedent,13 but it has not been demonstrated using glyoxy-
late as the nucleophile. Starting from readily accessed
amido-sulfones 114 and using the triazolium carbene de-
rived from 2,15 we observed addition of ethyl glyoxylate
(10) (a) Steward, K. M.; Gentry, E. C.; Johnson, J. S. J. Am. Chem. Soc.
2012, 134, 7329–7332. (b) Steward, K. M.; Corbett, M. T.; Goodman,
C. G.; Johnson, J. S. J. Am. Chem. Soc. 2012, 134, 20197–20206.
(c) Corbett, M. T.; Johnson, J. S. J. Am. Chem. Soc. 2013, 135, 594–597.
(11) Forageneralreview, see: (a)Hamada, Y.Chem. Pharm. Bull. 2012,
60, 1–20. For specific examples, see: (b) Noyori, R.; Ikeda, T.; Ohkuma,
T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.; Sayo, A. N.;
Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989,
temp
yieldb
(%)
€
111, 9134–9135. (c) Mordant, C.; Dunkelmann, P.; Ratovelomanana-
entry
PG
cat.
solvent
(°C)
drc
erd
Vidal, V.; Genet, J.-P. Eur. J. Org. Chem. 2004, 3017–3026. (d) Makino,
K.; Goto, T.; Hiroki, Y.; Hamada, Y. Angew. Chem., Int. Ed. 2004, 43,
882–884. (e) Makino, K.; Goto, T.; Hiroki, Y.; Hamada, Y. Tetrahedron:
Asymmetry 2008, 19, 2816–2828. (f) Liu, Z.; Schults, C. S.; Sherwood,
C. A.; Krska, S.; Dormer, P. G.; Desmond, R.; Lee, C.; Sherer, E. C.;
Shpungin, J.; Cuff, J.; Xu, F. Tetrahedron Lett. 2011, 52, 1685–1688.
1
2
3
4
5
6
7
Boc
Boc
Cbz
Boc
Boc
Boc
Cbz
5
6
6
6
7
7
7
DMSO
DMSO
DMSO
DMF
23
23
23
23
23
0
59
67
77
65
73
62
71
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
77:23
94:6
97:3
97:3
99:1
98:2
94:6
€
(g) Seashore-Ludlow, B.; Villo, P.; Hacker, C.; Somfai, P. Org. Lett.
DMF
2010, 12, 5274–5277.
DMF
(12) Patel, R. N.; Banerjee, A.; Howell, J. M.; McNamee, C. G.;
Brozozowski, D.; Mirfakhrae, D.; Nanduri, V.; Thottathil, J. K.; Szarka,
L. J. Tetrahedron: Asymmetry 1993, 4, 2069–2084.
(13) (a) Murry, J. A.;Frantz, D. E.;Soheili, A.; Tillyer, R.;Grabowski,
E. J. J.;Reider, P.J. J. Am. Chem. Soc. 2001, 123, 9696–9697. (b) DiRocco,
D. A; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 5904–5906.
(14) Amido sulfones were synthesized according to known proce-
dures. For full details, please consult the Supporting Information.
(15) Vora, H. U.; Lathrop, S. P.; Reynolds, N. T.; Kerr, M. S.; Read
de Alaniz, J.; Rovis, T. Org. Synth. 2010, 87, 350–361.
DMF
23
a Reaction optimization took place using a crude mixture of com-
pounds obtained via the aza-benzoin reaction which included the desired
starting material (cf. Scheme 2). b Isolated yield calculated based on the
assumption of pure R-keto ester starting material; actual yields are
probably somewhat higher. c Determined by 1H NMR analysis of crude
reaction mixture. d Determined by chiral HPLC or SFC analysis.
B
Org. Lett., Vol. XX, No. XX, XXXX