Paper
Organic & Biomolecular Chemistry
Measurement of signaling behaviors
Org. Lett., 2008, 10, 2931–2934; (c) S. Yamaguchi,
S. Akiyama and K. Tamao, J. Am. Chem. Soc., 2001, 123,
11372–11375; (d) K. M. K. Swamy, Y. J. Lee, H. N. Lee,
J. Chun, Y. Kim, S.-J. Kim and J. Yoon, J. Org. Chem., 2006,
71, 8626–8628.
6 X. Zhang, Y. Shiraishi and T. Hirai, Tetrahedron Lett., 2007,
48, 8803–8806.
7 S. K. Kim and J. Yoon, Chem. Commun., 2002, 770–
771.
8 R. Pohl, D. Aldakov, P. Kubát, K. Jursíková, M. Marquez
and P. Anzenbacher Jr., Chem. Commun., 2004, 1282–
1283.
9 P. Anzenbacher Jr., R. Nishiyabu and M. A. Palacios, Coord.
Chem. Rev., 2006, 250, 2929–2938.
10 M. H. Lee, D. T. Quang, H. S. Jung, J. Yoon, C.-H. Lee and
J. S. Kim, J. Org. Chem., 2007, 72, 4242–4245.
11 T. W. Hudnall, C.-W. Chiu and F. P. Gabbaï, Acc. Chem.
Res., 2009, 42, 388–397.
12 Y. Kim and F. P. Gabbaï, J. Am. Chem. Soc., 2009, 131, 3363–
3369.
The UV–vis and fluorescence signaling behaviors of
1
toward analytes in TBA salts were measured in acetonitrile.
Measuring solutions were prepared by successively placing
60 μL (for UV–vis measurements) or 30 μL (for fluorescence
measurements) of stock solution of 1, and 30 μL (for UV–vis
measurements) or 15 μL (for fluorescence measurements) of a
TBA salt solution (1.0 × 10−2 M) in a vial. The resulting solu-
tions were diluted to 3.0 mL with acetonitrile. The final con-
centrations of 1 and TBA salt were 1.0 × 10−5 M and 1.0 × 10−4
M for UV–vis, and 5.0 × 10−6 M and 5.0 × 10−5 M for fluo-
rescence measurements, respectively. The excitation wave-
length was 485 nm for fluorescence measurements. The
detection limit was estimated by plotting changes in the
fluorescence intensities of 1 at 591 nm as a function of log[F−]
following the reported procedure.29 A linear regression curve
was fitted to the intermediate values of the sigmoidal plot. The
point at which this line crossed the ordinate axis was taken as
the detection limit.
13 A. Coskun and E. U. Akkaya, Tetrahedron Lett., 2004, 45,
4947–4949.
14 S. Xu, K. Chen and H. Tian, J. Mater. Chem., 2005, 15,
2676–2680.
15 J. Du, M. Hu, J. Fan and X. Peng, Chem. Soc. Rev., 2012, 41,
4511–4535.
16 S. Y. Kim and J.-I. Hong, Org. Lett., 2007, 9, 3109–
3112.
Masking of sulfide interference
To remove interference from sulfide ions, the analyte was
treated with the TPEN–Cu2+ complex solution as a masking
agent. To each sample solution containing different anions,
22.5 μL of the TPEN–Cu2+ stock solution was added, followed
by probe 1 under the same conditions. The final concen-
trations of probe 1, anions, TPEN, and Cu2+ for fluorescence
measurements were 5.0 × 10−6 M, 5.0 × 10−5 M, 9.0 × 10−5 M,
and 7.5 × 10−5 M, respectively.
17 J. F. Zhang, C. S. Lim, S. Bhuniya, B. R. Cho and J. S. Kim,
Org. Lett., 2011, 13, 1190–1193.
18 J. Cao, C. Zhao and W. Zhu, Tetrahedron Lett., 2012, 53,
2107–2110.
19 X.-F. Yang, S.-J. Ye, Q. Bai and X.-Q. Wang, J. Fluoresc.,
2007, 17, 81–87.
20 T.-H. Kim and T. M. Swager, Angew. Chem., Int. Ed., 2003,
42, 4803–4806.
Acknowledgements
This research was supported by the Chung-Ang University
Research Scholarship Grant in 2012 (HGI).
21 L. D. Lavis and R. T. Raines, ACS Chem. Biol., 2008, 3, 142–
155.
22 H. Maeda, Y. Fukuyasu, S. Yoshida, M. Fukuda, K. Saeki,
H. Matsuno, Y. Yamauchi, K. Yoshida, K. Hirata and
K. Miyamoto, Angew. Chem., Int. Ed., 2004, 43, 2389–
2391.
23 H. Maeda, K. Yamamoto, Y. Nomura, I. Kohno,
L. Hafsi, N. Ueda, S. Yoshida, M. Fukuda, Y. Fukuyasu,
Y. Yamauchi and N. Itoh, J. Am. Chem. Soc., 2005, 127,
68–69.
24 (a) S.-P. Wang, W.-J. Deng, D. Sun, M. Yan, H. Zheng and
J.-G. Xu, Org. Biomol. Chem., 2009, 7, 4017–4020; (b) X. Li,
S. Qian, Q. He, B. Yang, J. Li and Y. Hu, Org. Biomol. Chem.,
2010, 8, 3627–3630; (c) C. Zhao, Y. Zhou, Q. Lin, L. Zhu,
P. Feng, Y. Zhang and J. Cao, J. Phys. Chem. B, 2011, 115,
642–647.
References
1 (a) A. Bianchi, K. Bowman-James and E. Garcia-Espana,
Supramolecular Chemistry for Anions, John Wiley & Sons,
New York, 1997; (b) J. L. Sessler and J. M. Davis, Acc. Chem.
Res., 2001, 34, 989–997.
2 (a) R. Martínez-Máñez and F. Sancenón, Chem. Rev., 2003,
103, 4419–4476; (b) T. Gunnlaugsson, M. Glynn,
G. M. Tocci, P. E. Kruger and F. M. Pfeffer, Coord. Chem.
Rev., 2006, 250, 3094–3117.
3 (a) S. Ayoob and A. K. Gupta, Crit. Rev. Environ.
Sci. Technol., 2006, 36, 433–487; (b) E. B. Bassin,
D. Wypij and R. B. Davis, Cancer Causes Control, 2006,
17, 421–428; (c) Y. Yu, W. Yang, Z. Dong, C. Wan,
J. T. Zhang, J. Liu, K. Xiao, Y. Huang and B. Lu, Fluoride,
2008, 41, 134–138.
25 X.-F. Yang, L. Wang, H. Xu and M. Zhao, Anal. Chim. Acta,
2009, 631, 91–95.
4 P. Connett, Fluoride, 2007, 40, 155–158.
5 (a) M. Cametti and K. Rissanen, Chem. Commun., 2009, 26 K. Cui, Z. Chen, Z. Wang, G. Zhang and D. Zhang, Analyst,
2809–2829; (b) H. M. Yeo, B. J. Ryu and K. C. Nam,
2011, 136, 191–195.
2970 | Org. Biomol. Chem., 2013, 11, 2966–2971
This journal is © The Royal Society of Chemistry 2013