490
S. Guo et al. / Tetrahedron: Asymmetry 24 (2013) 480–491
white solid in 54.3% yield. The crystals suitable for X-ray diffraction
were obtained from methanol–acetone (5:2) as colorless crystals.
References
194–196 °C. Rf = 0.2 (petroleum/EtOAc = 2/1),
½
a 2D0
ꢂ
¼ ꢀ77:85 (c
1. (a) Bladon, C. Pharmaceutical Chemistry: Therapeutic Aspects of Biomacromolecules;
Wiley: Chichester, England, 2002; (b) Patric, G. L. An Introduction to Medicinal
Chemistry; Oxford University Press: New York, 2005; (c) Reetz, M. T. Angew. Chem.,
Int. Ed. 2002, 41, 1335–1338; (d) Machida, Y.; Kagawa, M.; Nishi, H. J. Pharm.
Biomed. Anal. 2003, 30, 1929–1942; (e) Ema, T.; Tanida, D.; Hamada, K.; Sakai, T. J.
Org. Chem. 2008, 73, 9129–9132; (f)Naziroglu, H. N.; Durmaz, M.;Bozkurt, S.; Sirit,
A. Chirality 2011, 23, 463–471.
2. (a) Parker, D. Chem. Res. 1991, 91, 1441–1457; (b) Wenzel, T. J. Discrimination of
Chiral Compounds Using NMR Spectroscopy; Wiley: Hoboken, NJ, 2007.
3. (a) Kurganov, A. J. Chromatogr., A 2001, 906, 51–71; (b) Chankvetadze, B.;
Blaschke, G. J. Chromatogr., A 2001, 906, 309–363; (c) Ema, T.; Hamada, K.;
Sugita, K.; Nagata, Y.; Sakai, T.; Ohnishi, A. J. Org. Chem. 2010, 75, 4492–4500.
4. (a) Moon, L. S.; Pal, M.; Kasetti, Y.; Bharatam, P. V.; Jolly, R. S. J. Org. Chem. 2010,
75, 5487–5498; (b) Evans, M. A.; Morken, J. P. J. Am. Chem. Soc. 2002, 124, 9020–
9021; (c) Lei, X. X.; Liu, L.; Chen, X. J.; Yu, X. C.; Ding, L. S.; Zhang, A. J. Org. Lett.
2010, 12, 2540–2543.
0.06, CHC13). 1H NMR (400 MHz, DMSO-d6) d 2.67–2.73 (m, 2H),
3.05–3.14 (m, 3H), 3.56–3.57 (m, 1H), 3.59–3.64 (m, 1H), 4.36 (d,
J = 16.1 Hz, 1H), 4.84–4.88 (m, 2H), 4.92 (d, J = 15.9 Hz, 1H), 5.03
(d, J = 4.2 Hz, 1H), 5.15 (d, J = 11.2 Hz, 1H), 5.85 (dd, J = 7.5 Hz,
J = 1.4 Hz, 1H), 6.11 (d, J = 2.3 Hz, 1H), 6.44 (dd, J = 8.0 Hz,
J = 0.8 Hz, 1H), 6.58–6.62 (m, 1H), 6.73 (d, J = 7.1 Hz, 2H), 6.77–
6.80 (m, 2H), 6.88–6.94 (m, 3H), 6.96–7.03 (m, 3H), 7.04–7.06 (m,
5H), 7.15–7.21 (m, 3H), 7.24–7.29 (m, 2H), 7.53 (q, J = 7.7 Hz, 1H),
8.36 (dd, J = 8.2 Hz, J = 1.3 Hz, 1H), 9.94 (s, 1H), 12.02 (s, 1H). 13C
NMR (100 MHz, CDCl3) d 35.4, 38.0, 56.0, 58.0, 63.7, 66.5, 68.8,
73.1, 111.1, 116.6, 118.6, 120.4, 120.9, 121.1, 122.0, 124.2, 124.7,
125.8, 126.0, 126.3, 127.6, 127.7, 127.8, 128.1, 128.3, 128.9, 129.4,
129.5, 131.6, 134.7, 136.9, 137.7, 138.5, 155.7, 155.8, 155.9, 159.3,
170.2. IR (KBr) 3264, 1682, 1649, 1518, 1449, 751, 703. HRMS(ES+):
calcd for C45H42N5O4 (M+H)+ 716.3237, found 716.3230.
5. (a) Du, C. P.; You, J. S.; Yu, X. Q.; Liu, C. L.; Lan, J. B.; Xie, R. G. Tetrahedron:
Asymmetry 2003, 14, 3651–3656; (b) Tsubaki, K.; Tanima, D.; Nuruzzaman, M.;
Kusumoto, T.; Fuji, K.; Kawabata, T. J. Org. Chem. 2005, 70, 4609–4616; (c)
Demirtas, H. N.; Bozkurt, S.; Durmaz, M.; Yilmaz, M.; Sirit, A. Tetrahedron 2009,
65, 3014–3018.
6. (a) Li, Z. B.; Lin, J.; Pu, L. Angew. Chem., Int. Ed. 2005, 44, 1690–1693; (b) Qing, G.
Y.; He, Y. B.; Wang, F.; Qin, H. J.; Hu, C. G.; Yang, X. Eur. J. Org. Chem. 2007, 1768–
1778; (c) Alfonso, I.; Burguete, M. I.; Galindo, F.; Luis, S. V.; Vigara, L. J. Org.
Chem. 2009, 74, 6130–6142; (d) Liu, H. L.; Peng, Q.; Wu, Y. D.; Chen, D.; Hou, X.
L.; Sabat, M.; Pu, L. Angew. Chem., Int. Ed. 2010, 49, 602–606.
4.4. Determination of the stoichiometry by 1H NMR titrations
(Job plots)
7. (a) Weisman, G. R. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press:
New York, 1983; Vol. 1, (b) Fraser, R. R. In Asymmetric Synthesis; Morrison, J. D.,
Ed.; Academic Press: New YORK, 1983; Vol. 1, (c) Wenzel, T. J.; Wilcox, J. D.
Chirality 2003, 15, 256–270; (d) Seco, J. M.; Quiñoá, E.; Riguera, R. Chem. Rev.
2004, 104, 17–117; (e) Sunkur, M.; Baris, D.; Hosgoren, H.; Togrul, M. J. Org.
Chem. 2008, 73, 2570–2575; (f) Quinn, T. P.; Atwood, P. D.; Tanski, J. M.; Moore,
T. F.; Folmer-Anderson, J. F. J. Org. Chem. 2011, 76, 10020–10030.
8. (a) Inamoto, A.; Ogasawara, K.; Omata, K.; Kabuto, K.; Sasaki, Y. Org. Lett. 2000,
2, 3543–3545; (b) Wenzel, T. J.; Freeman, B. E.; Sek, D. C.; Zopf, J. J.; Nakamura,
T.; Yongzhu, J.; Hirose, K.; Tobe, Y. Anal. Bioanal. Chem. 2004, 378, 1536–1547.
9. Wenzel, T. J.; Amonoo, E. P.; Shariff, S. S.; Aniagyei, S. E. Tetrahedron: Asymmetry
2003, 14, 3099–3104.
10. (a) Wenzel, T. J.; Thurston, J. E. J. Org. Chem. 2000, 65, 1243–1248; (b) Wenzel,
T. J.; Thurston, J. E.; Sek, D. C.; Joly, J.-P. Tetrahedron: Asymmetry 2001, 12, 1125–
1130; (c) Lovely, A. E.; Wenzel, T. J. J. Org. Chem. 2006, 71, 9178–9182; (d)
Wenzel, T. J.; Bourne, C. E.; Clark, R. L. Tetrahedron: Asymmetry 2009, 20, 2052–
2060; (e) Turgut, Y.; Aral, T.; Hosgoren, H. Tetrahedron: Asymmetry 2009, 20,
2293–2298.
11. (a) Claeys-Bruno, M.; Toronto, D.; Pécaut, J.; Bardet, M.; Marchon, J.-C. J. Am.
Chem. Soc. 2001, 123, 11067–11068; (b) Ema, T.; Ouchi, N.; Doi, T.; Korenaga,
T.; Sakai, T. Org. Lett. 2005, 7, 3985–3988.
12. (a) Ito, K.; Noike, M.; Kida, A.; Ohba, Y. J. Org. Chem. 2002, 67, 7519–7522; (b)
Zheng, Y. S.; Zhang, C. Org. Lett. 2004, 6, 1189–1192; (c) Narumi, F.; Hattori, T.;
Matsumura, N.; Onodera, T.; Katagiri, H.; Kabuto, C.; Kameyama, H.; Miyano, S.
Tetrahedron 2004, 60, 7827–7833.
13. (a) Yang, D.; Li, X.; Fan, Y.-F.; Zhang, D.-W. J. Am. Chem. Soc. 2005, 127, 7996–
7997; (b) Cuevas, F.; Ballester, P.; Pericàs, M. A. Org. Lett. 2005, 7, 5485–5487;
(c) Iwaniuk, D. P.; Wolf, C. J. Org. Chem. 2010, 75, 6724–6727.
14. (a) Altava, B.; Barbosa, D. S.; Burguete, M. I.; Escorihuela, J.; Luis, S. V.
Tetrahedron: Asymmetry 2009, 20, 999–1003; (b) Bozkurt, S.; Durmaz, M.;
Naziroglu, H. N.; Yilmaz, M.; Sirit, A. Tetrahedron: Asymmetry 2011, 22, 541–
549; (c) Tripathi, A.; Kumar, A.; Pandey, P. S. Tetrahedron Lett. 2012, 53, 5745–
5748.
At first, CSA 1 or 2, (R)-21 and (S)-21 were separately dissolved
in CDCl3 with a concentration of 10 mM. These solutions were dis-
tributed among nine NMR tubes, with the molar fractions X of the
guest in the resulting solutions increasing from 0.1 to 0.9, with the
total concentration of the host and guest being 10 mM. The 1H
NMR spectra of all samples were recorded on a 400 HMz spectrom-
eter. The recorded Job plots of CSA 1, and (R)-21 and (S)-21 were
found to exhibit a maximum at 0.67. This indicates that the CSA
1 forms a 1:2 complex with 21. However, the recorded Job plots
of CSA 2, and (R)-21 and (S)-21 were found to exhibit a maximum
at 0.6. This indicates that CSA 1 forms a 1:1.5 complex with 21.
4.5. Discrimination ability of CSAs 1 and 2 toward racemic
guests 8–24
At first, CSA 1 or 2, and the guests were separately dissolved in
CDCl3 with a concentration of 20 mM. Then, 0.25 mL of CSA 1 or 2
and 0.25 mL guest were added to NMR tubes, so that the total vol-
ume was 0.5 mL, and the concentration of CSA and guest was
10 mM. For some less soluble guests, such as 11–14, 20, 23, and
24, a CDCl3/CD3OD-5% solution was used as a solvent. In addition,
1 equiv of CSA and 1 equiv of guest 23 were mixed, to which the
mixture of CDCl/CD3OD-5%, was added, and the concentration
was adjusted to 2.5 mM. The 1H NMR spectra of all samples were
recorded on a 400 MHz spectrometer.
15. (a) Zhang, X. X.; Bradshaw, J. S.; Izatt, R. M. Chem. Rev. 1997, 97, 3313–3361; (b)
Ema, T.; Tanida, D.; Sakai, T. J. Am. Chem. Soc. 2007, 129, 10591–10596; (c) Ma,
F. N.; Ai, L.; Shen, X. M.; Zhang, C. Org. Lett. 2007, 9, 125–127; (d) Ma, F. N.;
Shen, X. M.; Ming, X.; Wang, J. M.; Ou-Yang, J.; Zhang, C. Tetrahedron:
Asymmetry 2008, 19, 1576–1586.
16. Dahiya, R. Pak. J. Pharm. Sci. 2007, 20, 317–323.
17. Curini, M.; Epifano, F.; Maltese, F.; Marcotullio, M. C. Tetrahedron Lett. 2002, 43,
3821–3823.
18. (a) Shono, T.; Kise, N.; Oike, H.; Yoshimoto, M.; Okazaki, E. Tetrahedron Lett.
1992, 33, 5559–5562; (b) Kise, N.; Okie, H.; Okazaki, E.; Yoshimoto, M.; Shono,
T. J. Org. Chem. 1995, 60, 3980–3992; (c) Kise, N.; Iwasaki, T.; Yasuda, Y.;
Sakurai, T. Tetrahedron Lett. 2008, 49, 7074–7077.
4.6. Determination of the enantiomeric purity of guest 21
In order to demonstrate the accuracy of our method for the
determination of the enantiomeric excess of the guests, we pre-
pared seven samples containing guest (R)-21 with 60%, 40%, 20%,
0%, ꢀ20%, ꢀ40%, and ꢀ60% ee. All samples were prepared by add-
ing 0.5 equiv of CSA 1 or 1 equiv of CSA 2 into the above solutions
with a concentration of 10 mM in CDCl3, and their enantiomeric
compositions were determined by using the 1H NMR method on
a 400 MHz spectrometer. The results, which were calculated based
on the integration of the signals of the CH3– protons of 21, are
shown in Figures 9 and 10.
19. Crystal data for 2ꢃ2ꢃCH3COCH3ꢃ2ꢃCH3OH: C95H96N10O11; M = 1553.82; colorless,
triclinic, space group P1; a = 9.4373(7) Å, b = 12.8563(10) Å, c = 17.2237(13) Å;
V = 2022.8(3) Å3;
l
= 0.084 mmꢀ1; Z = 1; T = 110(2) K; F000 = 824; R1 = 0.0403,
wR2 = 0.0987. The crystallographic data have been deposited at the Cambridge
Crystallographic Data Center (CCDC) under deposition number 890101.
20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
Acknowledgement
This work was supported by the Beijing Municipal Commission
of Education.