ChemComm
Communication
cross-coupling of the resulting quinones with arenes in one
pot. Further studies to apply this methodology to the synthesis
of arylquinone-containing natural products are in progress.
We thank the National Basic Research Program of China
(973 Program, 2011CB808600) and the National NSF of China
(21202105, 21025205, 21272160, and 21021001) for their financial
support.
Scheme 2 Proposed mechanism for the oxidative C–H/C–H cross-coupling of
Notes and references
quinones with arenes.
1 (a) S. J. Gould, Chem. Rev., 1997, 97, 2499; (b) R. H. Thomson, Naturally
Occurring Quinones IV, Blackie Academic & Professional, London, 1997;
(c) B. Zhang, G. Salituro, D. Szalkowski, Z. Li, Y. Zhang, I. Royo, D. Vilella,
The exposure of 1,4-naphthoquinone 5a to a 1 : 1 mixture of
o-xylene and 1,2-dichlorobenzene resulted in the formation of the
corresponding arylquinones 3c and 3j in 67% and 7% yields,
respectively (eqn (2)), suggesting that the reaction of quinones with
electron-rich arenes was faster than with the electron-deficient
arenes. In addition, the primary kinetic isotope effect for benzene
(kH/kD = 2.3/1) was observed by conducting the competition reac-
tion between benzene and benzene-d6 (eqn (3)). Therefore, the C–H
bond cleavage of benzene might proceed through an electrophilic
palladation pathway and might be related to the rate-limiting step.
´
M. T. Dıez, F. Pelaez, C. Ruby, R. L. Kendall, X. Mao, P. Griffin,
J. Calaycay, J. R. Zierath, J. V. Heck, R. G. Smith and D. E. Moller,
Science, 1999, 284, 974; (d) J.-K. Liu, Chem. Rev., 2006, 106, 2209.
2 (a) C. Asche, Mini–Rev. Med. Chem., 2005, 5, 449; (b) J. Koyama,
Recent Pat. Anti-Infect. Drug Discovery, 2006, 1, 113; (c) K. Kobayashi,
S. Nishiumi, M. Nishida, M. Hirai, T. Azuma, H. Yoshida,
Y. Mizushina and M. Yoshida, Med. Chem., 2011, 7, 37.
3 B. Nowicka and J. Kruk, Biochim. Biophys. Acta, 2010, 1797, 1587.
4 T. Bechtold, in Handbook of Natural Colorants, ed. T. Bechtold and
R. Mussak, Wiley, New York, 2009, p. 151.
5 (a) D. E. Kvalnes, J. Am. Chem. Soc., 1934, 56, 2478; (b) C. Galli, Chem.
Rev., 1988, 88, 765; (c) I. Takahashi, O. Muramatsu, J. Fukuhara,
Y. Hosokawa, N. Takeyama, T. Morita and H. Kitajima, Chem. Lett.,
1994, 465; (d) M. R. Heinrich, Chem.–Eur. J., 2009, 15, 820.
6 (a) Y. Fujiwara, V. Domingo, I. B. Seiple, R. Gianatassio, M. D. Bel and
P. S. Baran, J. Am. Chem. Soc., 2011, 133, 3292; (b) J. Wang, S. Wang,
G. Wang, J. Zhang and X.-Q. Yu, Chem. Commun., 2012, 48, 11769.
7 (a) T. A. Engler and J. P. Reddy, J. Org. Chem., 1991, 56, 6491;
(b) H.-B. Zhang, L. Liu, Y.-J. Chen, D. Wang and C.-J. Li, Adv. Synth.
Catal., 2006, 348, 229.
(2)
8 (a) O. M. Demchuk and K. M. Pietrusiewicz, Synlett, 2009, 1149;
´
(b) M. T. Molina, C. Navarro, A. Moreno and A. G. Csak¨y, Org. Lett.,
2009, 11, 4938.
9 (a) N. Tamayo, A. M. Echavarren and M. C. Paredes, J. Org. Chem., 1991,
56, 6488; (b) L. S. Liebeskind and S. W. Riesinger, J. Org. Chem., 1993,
´
´
58, 408; (c) A. M. Echavarren, N. Tamayo, O. Frutos and A. Garcıa,
´
Tetrahedron, 1997, 53, 16835; (d) A. M. Echavarren, O. Frutos,
(3)
N. Tamayo, P. Noheda and P. Calle, J. Org. Chem., 1997, 62, 4524;
(e) X. Gan, W. Jiang, W. Wang and L. Hu, Org. Lett., 2009, 11, 589.
Finally, the reaction of 5a with benzene 2a and stoichiometric
Pd(acac)2 provided 3a in 92% yield in the absence of the oxidant
Ag2CO3 (eqn (4)), which suggested that arylquinones were
formed directly by the oxidative C–H/C–H cross-coupling rather
than generated from the oxidation of arylated hydroquinones.8
¨
10 (a) H. Grennberg, A. Gogoll and J.-E. Backvall, Organometallics, 1993,
12, 1790; (b) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew.
Chem., Int. Ed., 2009, 48, 5094; (c) T. W. Lyons and M. S. Sanford,
Chem. Rev., 2010, 110, 1147; (d) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem.
Commun., 2010, 46, 677; (e) C. Liu, H. Zhang, W. Shi and A. Lei,
Chem. Rev., 2011, 111, 1780.
11 (a) T. Itahara, J. Chem. Soc., Chem. Commun., 1981, 859; (b) T. Itahara,
J. Org. Chem., 1985, 50, 5546; (c) R. A. Oliveira, F. Carazza and
M. O. da S. Pereira, Synth. Commun., 2000, 30, 4563; (d) R. A. Oliveira,
E. V. Gusevskaya and F. Carazza, J. Braz. Chem. Soc., 2002, 13, 110.
12 (a) B. Karimi, H. Behzadnia, D. Elhamifar, P. F. Akhavan,
F. K. Esfahani and A. Zamani, Synthesis, 2010, 1399; (b) J. L. Bras
and J. Muzart, Chem. Rev., 2011, 111, 1170; (c) C. S. Yeung and
V. M. Dong, Chem. Rev., 2011, 111, 1215.
(4)
As illustrated in Scheme 2, a plausible mechanism was
proposed for the oxidative C–H/C–H cross-coupling of quinones 13 (a) R. H. Thomson, in The Chemistry of the Quinonoid Compounds, ed.
S. Patai, Wiley, London, 1974, p. 111; (b) Y. Naruta and K. Maruyama,
in The Chemistry of Quinonoid Compounds, ed. S. Patai and
Z. Rappoport, Wiley, London, 1988, p. 241; (c) D. V. Pratt, F. Ruan
with arenes. The SEAr reaction of arene with Pd(II) produced the
arylpalladium complex I, followed by two possible pathways: (1)
path A might involve the Heck-type arylpalladation of quinone
5 with ArPdX I and the following b–H elimination to produce
the desired arylquinone 3 or 4; and (2) path B might undergo
and P. B. Hopkins, J. Org. Chem., 1987, 52, 5053; (d) F. Minisci,
A. Citterio, E. Vismara, F. Fontana and S. De Bernardinis, J. Org.
Chem., 1989, 54, 728; (e) H. Miyamura, M. Shiramizu, R. Matsubara
and S. Kobayashi, Angew. Chem., Int. Ed., 2008, 47, 8093.
the C–H cleavage of quinone 5a via a carboxylate-assisted 14 D. Zhao, J. You and C. Hu, Chem.–Eur. J., 2011, 17, 5466.
concerted metalation–deprotonation (CMD) pathway16 and
subsequent reductive elimination.
15 3a was obtained in 90% yield in the absence of TEMPO (see (ESI†),
Table S1, entry 16).
16 For selected examples involving the alkenyl C–H cleavage, see:
In conclusion, a concise and efficient protocol for the
synthesis of arylquinones from widely available hydroquinones
has been developed. The reaction proceeds through the oxida-
tion of hydroquinones and subsequent oxidative C–H/C–H
(a) D. Cheng and T. Gallagher, Org. Lett., 2009, 11, 2639; (b) H. Yu,
W. Jin, C. Sun, J. Chen, W. Du, S. He and Z. Yu, Angew. Chem., Int.
Ed., 2010, 49, 5792; (c) K. H. Kim, H. S. Lee and J. N. Kim, Tetra-
hedron Lett., 2011, 52, 6228; (d) K. H. Kim, H. S. Lee, S. H. Kim and
J. N. Kim, Tetrahedron Lett., 2012, 53, 2761.
c
4560 Chem. Commun., 2013, 49, 4558--4560
This journal is The Royal Society of Chemistry 2013