Inorganic Chemistry
Communication
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures, synthetic procedures, NMR
spectra, Figures S1−S22, additional acknowledgments, and
equations. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
D.P.H. acknowledges support from the U.S. Department of
Energy Office of Science, Office of Basic Energy Sciences, under
Award DE-FG02-06ER15788 and the Virginia Military Institute.
A.M.L., R.A.B., and J.J.C. acknowledge support from the UNC
Energy Frontier Research Center (EFRC): Center for Solar
Fuels, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Award DE-SC0001011.
Figure 4. (A) Reductive CVs of poly-1 under N2 (black). (B) Oxidative
CVs of a poly-1 electrode prior to reductive cycling (blue; Γ = 1.7 × 10−9
mol/cm2) and after reductive cycling (red). Both parts A and B were
obtained in fresh solutions of 0.1 M [TBA]PF6/MeCN after
electropolymerization on a 0.071 cm2 GCE.
poly‐RuNCMe0 − 2e− → poly‐RuNCMe2+
(5)
REFERENCES
■
Ligand-based reduction and substitution are accompanied by a
loss of Faradaic response, with Γ = 1.7 × 10−9 mol/cm2 for the
initial poly-1 RuIII/II wave at E1/2 = +0.56 V decreasing to Γ = 9.3
× 10−10 mol/cm2 for the poly-2 wave at E1/2 = +1.03 V. In
addition, a new, distorted prewave appears at Ep,a = +0.82 V
(Figure 4b). This observation points to a 46% decrease in the
redox response at the end of three reductive scan cycles. A related
response was observed for a thinner film of poly-1 with Γ = 4.5 ×
10−10 mol/cm2 before a reductive cycle and Γ = 3.2 × 10−10 mol/
cm2 for poly-2, a 29% loss. Reductive cycling of poly-ONO2 and
poly-H2O both result in poly-2 with comparable decreases in Γ
(Figures S15 and S16, SI). The loss mechanism is currently
under investigation. It is noteworthy that, after the initial
exchange occurs with a loss of electroactivity, further decreases
are greatly ameliorated upon additional reductive scan cycles
(Figure S13, SI).
Our results are important in revealing systematic and
synthetically exploitable features in the film-based coordination
chemistries of poly-1 and poly-2 with significant differences
between film and solution behavior. Polypyridyl complexes of
dπ6 RuII typically undergo slow loss of nitrile ligands. Nitrile
ligands are weak σ donors and derive coordinative stability from
dπ−π* back-bonding from RuII. With oxidation to RuIII, back-
bonding stabilization is no longer a factor, and nitriles become
good leaving groups. Nitrile labilization was exploited here to
convert poly-2 into poly-ONO2 and poly-OH2.
(1) (a) Calvert, J. M.; Schmehl, R. H.; Sullivan, B. P.; Facci, J. S.; Meyer,
T. J.; Murray, R. W. Inorg. Chem. 1983, 22, 2151−2162. (b) Gould, S.;
Gray, K. H.; Linton, R. W.; Meyer, T. J. Inorg. Chem. 1992, 31, 5521−
5525. (c) Devenney, M.; Worl, L. A.; Gould, S.; Guadalupe, A.; Sullivan,
B. P.; Caspar, J. V.; Leasure, R. L.; Gardner, J. R.; Meyer, T. J. J. Phys.
Chem. A 1997, 101, 4535−4540. (d) Moss, J. A.; Argazzi, R.; Bignozzi, C.
A.; Meyer, T. J. Inorg. Chem. 1997, 36, 762−763. (e) Moss, J. A.; Yang, J.
C.; Stipkala, J. M.; Wen, X.; Bignozzi, C. A.; Meyer, G. J.; Meyer, T. J.
Inorg. Chem. 2004, 43, 1784−1792. (f) O’Toole, T. R.; Margerum, L. D.;
Westmoreland, T. D.; Vining, W. J.; Murray, R. W.; Meyer, T. J. J. Chem.
Soc., Chem. Commun. 1985, 1416−1417. (g) Ramos Sende, J. A.; Arana,
C. R.; Hernandez, L.; Potts, K. T.; Keshevarz-K, M.; Abruna, H. D. Inorg.
Chem. 1995, 34, 3339−3348. (h) Cosnier, S.; Deronzier, A.; Moutet, J.-
C. J. Mol. Catal. 1988, 45, 381−391. (i) Abruna, H. D.; Denisevich, P.;
Umana, M.; Meyer, T. J.; Murray, R. W. J. Am. Chem. Soc. 1981, 103, 1−
5. (j) Yang, J.; Sykora, M.; Meyer, T. J. Inorg. Chem. 2005, 44, 3396−
3404.
(2) (a) Cosnier, S.; Deronzier, A.; Moutet, J.-C. J. Electroanal. Chem.
Interfacial Electrochem. 1986, 207, 315−321. (b) Deronzier, A.; Eloy, D.;
Jardon, P.; Martre, A.; Moutet, J.-C. J. Electroanal. Chem. 1998, 453,
179−185. (c) Mola, J.; Mas-Marza, E.; Sala, X.; Romero, I.; Rodríguez,
M.; Vinas, C.; Parella, T.; Llobet, A. Angew. Chem., Int. Ed. 2008, 47,
̃
5830−5832. (d) Cheung, K.-C.; Guo, P.; So, M.-H.; Zhou, Z.-Y.; Lee, L.
Y. S.; Wong, K.-Y. Inorg. Chem. 2012, 51, 6468−6475.
(3) (a) Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.;
Patrocinio, A. O. v. T.; Murakami Iha, N. Y.; Templeton, J. L.; Meyer, T.
J. Acc. Chem. Res. 2009, 42, 1954−1965. (b) Chen, Z.; Concepcion, J. J.;
Jurss, J. W.; Meyer, T. J. J. Am. Chem. Soc. 2009, 131, 15580−15581.
(4) Nie, H.-J.; Shao, J.-Y.; Wu, J.; Yao, J.; Zhong, Y.-W. Organometallics
2012, 31, 6952−6959.
The film environment also plays an important role. Following
conversion of poly-2 into poly-OH2, there is no sign of
(5) Silver wire reference electrode solution: 0.01 M AgNO3, 0.1 M
[TBA]PF6, MeCN solution; −0.094 V vs FeCp2.
substitution of H2O for MeCN in poly-OH2 or poly-RuIIIOH2
3+
(6) Abruna, H. D. Coord. Chem. Rev. 1988, 86, 135−189.
̃
even over extended soaking or oxidative cycling periods in
MeCN. This is a potentially important observation for possible
applications in organic electrocatalysis based on RuO forms of
poly-OH2 with MeCN as the external solvent.9 Oxidatively
induced anation and aquation provide a basis for systematic
manipulation of the coordination environment at the redox-
active RuII sites in films. Ligand-based reduction offers a route to
loss of anions or water in MeCN to return the films to the initial
poly-2 state.
(7) Takeuchi, K. J.; Thompson, M. S.; Pipes, D. W.; Meyer, T. J. Inorg.
Chem. 1984, 23, 1845−1851.
(8) (a) Meyer, T. J.; Huynh, M. H. V. Inorg. Chem. 2003, 42, 8140−
8160. (b) Gagliardi, C. J.; Vannucci, A. K.; Concepcion, J. J.; Chen, Z.;
Meyer, T. J. Energy Environ. Sci. 2012, 5, 7704−7717.
(9) Vanucci, A. K.; Chen, Z.; Concepcion, J. J.; Meyer, T. J. ACS Catal.
2012, 2, 716−719.
4749
dx.doi.org/10.1021/ic302472r | Inorg. Chem. 2013, 52, 4747−4749