ChemComm
Communication
(c) C. Patze, K. Broedner, F. Rominger, O. Trapp and U. H. F. Bunz,
Chem.–Eur. J., 2011, 17, 13720–13725; (d) P. L. McGrier,
K. M. Solntsev, S. Miao, L. M. Tolbert, O. R. Miranda, V. M. Rotello
and U. H. F. Bunz, Chem.–Eur. J., 2008, 14, 4503–4510.
¨
4 (a) M. Hauck, J. Schonhaber, A. J. Zucchero, K. I. Hardcastle,
T. J. Mu¨ller and U. H. F. Bunz, J. Org. Chem., 2007, 72, 6714–6725;
(b) J. N. Wilson and U. H. F. Bunz, J. Am. Chem. Soc., 2005, 127,
4124–4125.
5 S. M. Brombosz, A. J. Zucchero, R. L. Phillips, D. Vazquez, A. Wilson
and U. H. F. Bunz, Org. Lett., 2007, 9, 4519–4522.
Fig. 5 Changes in the emission colour of benzimidazole sensors 5 (left) and 10
(right) upon exposure to anions. Anions were added in excess as their TBA+ salts.
Emission colours were recorded in THF, using a handheld UV lamp (lexc = 365 nm)
as the excitation source.
ˇ
´
6 (a) J. Lim, T. A. Albright, B. R. Martin and O. S. Miljanic, J. Org.
Chem., 2011, 76, 10207–10209; (b) J. Lim, K. Osowska, J. A. Armitage,
ˇ
´
B. R. Martin and O. S. Miljanic, CrystEngComm, 2012, 14, 6152–6162;
(c) K. Osowska and O. S. Miljanic, Chem. Commun., 2010, 46,
previously reported benzobisoxazole cruciforms,6a it appears that a
more basic pyridine nucleus (substituted e.g. with electron-donating
methyl groups) would be a better choice.
ˇ
´
4276–4278; (d) A. K. Feldman, M. L. Steigerwald, X. Guo and
C. Nuckolls, Acc. Chem. Res., 2008, 41, 1731–1741; (e) J. E. Klare,
G. S. Tulevski and C. Nuckolls, Langmuir, 2004, 20, 10068–10072;
( f ) J. E. Klare, G. S. Tulevski, K. Sugo, A. de Picciotto, A. K. White
and C. Nuckolls, J. Am. Chem. Soc., 2003, 125, 6030–6031;
(g) B. C. Tlach, A. L. Tomlinson, A. Bhuwalka and M. Jeffries-EL,
J. Org. Chem., 2011, 76, 8670–8681.
Finally, we attempted to qualitatively assess whether half-
cruciforms 5 and 10 can be used as fluorescent sensors for
small inorganic and organic anions.13 Dilute solutions of 5 and
10 in THF were exposed to excess of TBA+ salts of several
representative anions. Fig. 5 summarizes the emission colour
changes resulting from these additions. Both sensors minimally
changed their fluorescence when exposed to the weakly basic
ClÀ, NO3À and ClO4À anions. However, more basic FÀ, AcOÀ and
7 For a recent review on imidazole-based receptors, see: (a) P. Molina,
´
´
A. Tarraga and F. Oton, Org. Biomol. Chem., 2012, 10, 1711–1724. For
recent examples, see; (b) M. Tasior, V. Hugues, M. Blanchard-Desce
and D. T. Gryko, Chem.–Asian. J., 2012, 7, 2656–2661; (c) A. J.
Boydston, C. S. Pecinovsky, S. T. Chao and C. W. Bielawski, J. Am.
Chem. Soc., 2007, 129, 14550–14551; (d) A. J. Boydston, P. D. Vu,
O. L. Dykhno, V. Chang, A. R. Wyatt, II, A. S. Stockett,
E. T. Ritschdorff, J. B. Shear and C. W. Bielawski, J. Am. Chem.
Soc., 2008, 130, 3143–3156; (e) A. J. Boydston, D. M. Khramov and
C. W. Bielawski, Tetrahedron Lett., 2006, 47, 5123–5125;
( f ) D. M. Khramov, A. J. Boydston and C. W. Bielawski, Org. Lett.,
2006, 8, 1831–1834; (g) T. Inouchi, T. Nakashima, M. Toba and
T. Kawai, Chem.–Asian J., 2011, 6, 3020–3027; (h) M. Gerspacher,
S. Weiler, PCT Int. Appl. WO2005068433, 2005.
3À
PO4 anions turned ON the fluorescence of 5 and also signifi-
cantly modulated the emission colour of 10—particularly in the
case of fluoride.
In conclusion, benzimidazole fluorophores described here
can be easily synthesized in two steps. Their optical response
to acids is moderate and somewhat difficult to rationalize,
presumably on the account of (a) similar basicities of several
possible protonation sites, and (b) incomplete spatial separa-
tion of FMOs within the molecules. On the other hand, their
response to bases is much more dramatic, as all but two
members of this class consistently shift their emission maxima
toward the red region. The fact that these fluorophores preserve
their fluorescence upon deprotonation is intriguing, as it
suggests that benzimidazolate anions of 5–13 could potentially
be used as building blocks for the porous zeolitic imidazolate
frameworks (ZIFs),14 thus opening up routes to crystallographically
ordered solid-state sensors. We are exploring this and other
applications of the L-shaped benzimidazole fluorophores and will
report our findings in due course.
This research was generously supported by the National
Science Foundation CAREER program (CHE-1151292), the
Welch Foundation (grant no. E-1768), the University of Houston
(UH) and the Texas Center for Superconductivity at UH. Prof.
Thomas A. Albright and Mr Jaebum Lim (UH) are gratefully
acknowledged for assistance with computations and fluores-
cence titrations, respectively.
´
´
8 (a) R. Wsik, P. Winska, J. Poznanski and D. Shugar, J. Phys. Chem. B,
2012, 116, 7259–7268; (b) Q. Peng, J. Xu and W. Zheng, J. Polym. Sci.,
Part A: Polym. Chem., 2009, 47, 3399–3408.
ˇ
´
´
9 (a) K. Osowska and O. S. Miljanic, J. Am. Chem. Soc., 2011, 133, 724–727;
ˇ
(b) K. Osowska and O. S. Miljanic, Synlett, 2011, 1643–1648.
10 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark,
J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,
V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg,
S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz,
J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc,
Wallingford, CT, 2010.
11 H. Walba and R. W. Isensee, J. Org. Chem., 1961, 26, 2789–2791. The
only two compounds in the series that respond to deprotonation
with a blue shift are 6 and 12, which have significantly higher LUMO
than HOMO densities in the imidazole ring; see ESI‡ for their
titration profiles.
12 These values are quoted for the parent molecules, and may in fact
vary significantly in an extensively substituted system such as 10.
Notes and references
1 (a) A. J. Zucchero, P. L. McGrier and U. H. F. Bunz, Acc. Chem. Res., 13 (a) C. N. Carroll, J. J. Naleway, M. M. Haley and D. W. Johnson,
2010, 43, 397–408; (b) A. J. Zucchero, J. N. Wilson and U. H. F. Bunz,
J. Am. Chem. Soc., 2006, 128, 11872–11881; (c) J. A. Marsden,
J. J. Miller, L. D. Shirtcliff and M. M. Haley, J. Am. Chem. Soc.,
2005, 127, 2464–2476.
Chem. Soc. Rev., 2010, 39, 3875–3888; (b) J. L. Sessler, P. Gale and
W.-S. Cho, Anion Receptor Chemistry, RSC Publishing, Cambridge,
2006; (c) P. A. Gale, Chem. Commun., 2011, 47, 82–86; (d) S. R. Bayly
and P. D. Beer, Top. Curr. Chem., 2008, 129, 45–94; (e) R. Martinez-
´
2 (a) E. A. Davey, A. J. Zucchero, O. Trapp and U. H. F. Bunz, J. Am.
Manez and F. Sancenon, Chem. Rev., 2003, 103, 4419–4476.
ˆ ´
Chem. Soc., 2011, 133, 7716–7718; (b) J. Lim, D. Nam and O. 14 (a) B. Wang, A. P. Cote, H. Furukawa, M. O’Keeffe and O. M. Yaghi,
ˇ
´
S. Miljanic, Chem. Sci., 2012, 3, 559–563.
Nature, 2008, 453, 207–211; (b) R. Banerjee, A. Phan, B. Wang,
C. Knobler, H. Furukawa, M. O’Keeffe and O. M. Yaghi, Science,
2008, 319, 939–943.
ˇ
´
3 (a) J. Lim and O. S. Miljanic, Chem. Commun., 2012, 48, 10301–10303;
(b) J. Kumpf and U. H. F. Bunz, Chem.–Eur. J., 2012, 18, 8921–8924;
c
4306 Chem. Commun., 2013, 49, 4304--4306
This journal is The Royal Society of Chemistry 2013