3104
M. Yusufi et al. / Bioorg. Med. Chem. Lett. 23 (2013) 3101–3104
The anticancer potency of the synthesized analogs was evalu-
Further studies are in progress to delineate precise molecular mech-
anism relating to their anti-proliferative and pro-apoptotic effects.
ated in two pancreatic MiaPaCa-2 and BxPC-3 cancer cell lines.
The results obtained revealed differential sensitivity of the com-
pounds towards cell viability. ATQ and ATQTFB exhibited either
no significant effect or an effect similar to TQ at equimolar concen-
trations in BxPC-3 cell line that we investigated (Fig. 4B). In con-
trast, ATQTHB was promising amongst all; at equimolar
concentration of TQ, against MiaPaCa-2 cell line and it showed
>50% enhancement in the loss of cell viability compared to parental
TQ (Fig. 4A). Similar results were also noted in BxPC-3 cells
(Fig. 4B). This loss in cell viability, paralleled with apoptosis induc-
tion which was confirmed by Histone DNA ELISA in MiaPaCa-2
cells using ATQTFB and ATQTHB (Fig. 4C). Results revealed a trend
similar to cell viability results showing a significant increase in
apoptotic cells which was more pronounced in case of ATQTHB
treated cells than TQ at equivalent concentration (Fig. 4C). To
examine our hypothesis whether the Gemcitabine resistant Mia-
PaCa-2 cells when pre-treated with the synthesized ATQTHB or
ATQTFB analogs could be more sensitive to the cytotoxic effect
of Gemcitabine, we followed schedule of ATQTHB and ATQTFB
pre-treatment protocol wherein the effect of only ATQTHB
Acknowledgments
S.P. would like to acknowledge Mr. P. A. Inamdar, President,
MCES, Pune, for the encouragement. We are thankful to NMR Re-
search Centre, Indian Institute of Science, Bangalore for providing
NMR spectral data.
Supplementary data
Supplementary data associated with this article can be found, in
References
1. Siegel, R.; Naishadham, D.; Jemal, A. CA Cancer J. Clin. 2012, 62, 10.
2. Banerjee, S.; Padhye, S.; Azmi, A.; Wang, Z.; Philip, P. A.; Kucuk, O.; Sarkar, F. H.;
Mohammad, R. M. Nutr. Cancer 2010, 62, 938.
3. Padhye, S.; Banerjee, S.; Ahmad, A.; Mohammed, R.; Sarkar, F. H. Cancer Ther.
2008, 6, 495.
4. Woo, C. C.; Kumar, A. P.; Sethi, G.; Tan, K. H. Biochem. Pharmacol. 2012, 83, 443.
5. Tageja, N.; Padhye, S.; Dandawate, P.; Al-katib, A.; Mohammed, R. J. Hematol.
Oncol. 2009, 2, 50.
6. Dandawate, P. R.; Vyas, A. C.; Padhye, S. B.; Singh, M. W.; Baruah, J. B. Mini-Rev.
Med. Chem. 2010, 10, 436.
7. Banerjee, S.; Azmi, A. S.; Padhye, S.; Singh, M. W.; Baruah, J. B.; Philip, P. A.;
Sarkar, F. H.; Mohammad, R. M. Pharm. Res. 2010, 27, 1146.
8. Effenberger, K.; Breyer, S.; Schobert, R. Chem. Biodivers. 2010, 7, 129.
9. Breyer, S.; Effenberger, K.; Schobert, R. Chem. Med. Chem. 2009, 4, 761.
10. Padhye, S.; Yang, H.; Jamadar, A.; Cui, Q. C.; Chavan, D.; Dominiak, K.;
McKinney, J.; Banerjee, S.; Dou, Q. P.; Sarkar, F. H. Pharm. Res. 2009, 26, 1874.
11. Padhye, S.; Ahmad, A.; Oswal, N.; Dandawate, P.; Rub, R. A.; Deshpande, J.;
Swamy, K. V.; Sarkar, F. H. Bioorg. Med. Chem. Lett. 2010, 20, 5818.
12. Moore, H. W.; Shelden, H. R. J. Org. Chem. 1968, 33, 4019.
13. Sadowski, J.; Gasteiger, J.; Klebe, G. J. Chem. Inf. Comput. Sci. 1994, 34, 1000.
14. Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455.
(2.5
lM), Gemcitabine alone (0.5
l
M),33 and ATQTHB/ATQTFB
pre-treatment (2.5
l
M; 24 h) followed by Gemcitabine treatment
(72 hrs) on viability of MiaPaCa-2 cells evaluated by MTT
(Fig. 4D). Based on our data we conclude that sub-toxic dose of
ATQTFB did not exert any significant chemosensitizing effect on
the investigated cell lines. On the contrary we found treatment
of cells with Gemcitabine alone (for 72 h) caused >50% (p <0.05)
loss of MiaPaCa-2 cells viability (Fig. 4D). However, pre-treatment
of cells with ATQTHB for 24 h followed by treatment with the cyto-
toxic agent Gemcitabine for 72 h resulted in a significant loss of
viable cells (<80%; p <0.001) in the MiaPaCa-2 cell line indicating
that ATQTHB sensitizes resistant MiaPaCa-2 cells to the cytotoxic
effect of Gemcitabine.
15. The PyMOL Molecular Graphics System, Schrödinger, LLC.
16. Mahadevan, D.; Periandy, S.; Ramalingam, S. Spectrochim. Acta, Part A 2011, 84,
86.
Over the years, the quest to explore and improve existing tra-
ditional phytochemicals for the treatment and prevention of can-
cer has driven the development of novel analogs with improved
anticancer therapeutic effecacy without toxicity to normal cells.
Several pre-clinical studies that have been reported reveal that
TQ exhibits multi-targeted pleiotropic effects associated with
chemoprevention and chemosensitisation of cancer. Previously,
we have demonstrated that TQ exhibited chemosensitisation ef-
fects in Gemcitabine and Oxaliplatin.2 The effect was attributed
to the inactivation of DNA binding activity of NF-kB, resulting
in the inactivation of multiple downstream survival molecules.
In the present study we have synthesized new TQ analogs that
reduce cell viability of pancreatic cancer cells by stimulating tu-
mor cells to undergo apoptosis. Of interest, compared to parental
compound TQ, one of the synthesized analog (ATQTHB) presents
a much superior and significant inhibition of viable cells at equi-
molar concentration of TQ. Although yet to be explored, we pro-
pose that our analogs sensitize tumor cells to Gemcitabine by
suppressing the pro-survival and pro-angiogenic molecule COX-
2.
17. Rozwadowski, Z.; Ambroziak, K.; Szypa, M.; Jagodzin´ ska, E.; Spychaj, S.; Schilf,
W.; Kamien´ ski, B. J. Mol. Struct. 2005, 734, 137.
18. Ding, X. Z.; Hennig, R.; Adrian, T. E. Mol. Cancer 2003, 2, 10.
19. Rioux, N.; Castonguay, A. Carcinogenesis 1998, 19(8), 1393.
20. Shureiqi, I.; Lippman, S. M. Cancer Res. 2001, 61, 6307.
21. Steele, V. E.; Holmes, C. A.; Hawk, E. T.; Kopelovich, L.; Lubet, R. A.; Crowell, J.
A.; Sigman, C. C.; Kelloff, G. J. Cancer Epidemiol. Biomarkers Prev. 1999, 8, 467.
22. Subbaramaiah, K.; Dannenberg, A. J. Trends Pharmacol. Sci. 2003, 24, 96.
23. Dannenberg, A. J.; Altorki, N. K.; Boyle, J. O.; Dang, C.; Howe, L. R.; Weksler, B.
B.; Subbaramaiah, K. Lancet Oncol. 2001, 2, 544.
24. Okami, J.; Yamamoto, H.; Fujiwara, Y.; Tsujie, M.; Kondo, M.; Noura, S.; Oshima,
S.; Nagano, H.; Dono, K.; Umeshita, K.; Ishikawa, O.; Sakon, M.; Matsuura, N.;
Nakamori, S.; Monden, M. Clin. Cancer Res. 1999, 5, 2018.
25. Kokawa, A.; Kondo, H.; Gotoda, T.; Ono, H.; Saito, D.; Nakadaira, S.; Kosuge, T.;
Yoshida, S. Cancer (Philadelphia) 2001, 91, 333.
26. Tucker, O. N.; Dannenberg, A. J.; Yang, E. K.; Zhang, F.; Teng, L.; Daly, J. M.;
Soslow, R. A.; Masferrer, J. L.; Woerner, B. M.; Koki, A. T.; Fahey, T. J. Cancer Res.
1999, 59, 987.
27. El-Rayes, B. F.; Ali, S.; Sarkar, F. H.; Philip, P. A. Mol. Cancer Ther. 2004, 3, 1421.
28. Arjona-Sánchez, A.; Ruiz-Rabelo, J.; Perea, M. D.; Vázquez, R.; Cruz, A.; Muñoz
Mdel, C.; Túnez, I.; Muntané, J.; Padillo, F. J. Pancreatology 2010, 10, 641.
29. Lipton, A.; Campbell-Baird, C.; Witters, L.; Harvey, H.; Ali, S. J. Clin.
Gastroenterol. 2010, 44, 286.
30. Dragovich, T.; Burris, H., 3rd.; Loehrer, P.; Von Hoff, D. D.; Chow, S.; Stratton, S.;
Green, S.; Obregon, Y.; Alvarez, I.; Gordon, M. Am. J. Clin. Oncol. 2008, 31, 157.
31. Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C. J.; Arafat, H. A. HPB (Oxford) 2009, 11,
373.
32. El Mezayen, R.; El Gazzar, M.; Nicolls, M. R.; Marecki, J. C.; Dreskin, S. C.;
Nomiyama, H. Immunol. Lett. 2006, 106, 72.
In conclusion, we have synthesized and structurally character-
ized novel analogs of thymoquinone which exhibit potent anti-pro-
liferative activities against pancreatic cancer cell lines which open
up the possibilities of optimizing application of these analogs for
translational research. Amongst these analogs, ATQTHB showed
superior sensitization of pancreatic cancer under in vitro system.
33. Li, Y.; VandenBoom, T. G.; Kong, D.; Wang, Z.; Ali, S.; Philip, P. A.; Sarkar, F. H.
Cancer Res. 2009, 69, 6704.