2888
N. Shahnaz et al. / Tetrahedron Letters 54 (2013) 2886–2889
Table 3
Table 5
Effects of bases in the Suzuki–Miyaura reactionsa of 4-chloronitrobenzene with
Suzuki–Miyaura Reactionsa of various aryl chlorides with arylboronic acids with
phenylboronic acid using complex 2 as catalyst
complex 2 as catalyst
Complex (1 mol%)
Complex 2 (0.2 mol%), 100 0
K2CO3, DMF
C
2
+
Cl
NO2
B(OH)2
NO2
Base, DMF, 100 0
C
Cl
B(OH)2
+
R
R'
R'
R
Entry
Base
Time (h)
Yieldb,c (%)
Entry
R
R0
Time (h)
Yieldb,c (%)
1
2
3
4
5
6
7
NaOH
K2CO3
KF
MgCO3
Cs2CO3
LiOH
5
1
5
6
1
6
6
90
98
85
52
96
87
84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
4-NO2
4-CHO
4-COCH3
H
4-OCH3
4-CH3
4-CH2OH
3-CH2OH
2-OCH3
2-NO2
3-NO2
2-CH3
4-NO2
4-NO2
4-NO2
4-CH3
H
H
H
H
H
H
H
H
H
H
H
H
4-Cl
3-NO2
4-CH3
4-CH3
1
2
2
4
4
4
4
6
6
6
6
6
6
6
6
6
98 (63)d
88
92
82 (42)d
86
82 (34)d
NaHCO3
83
66
57
a
Reaction conditions: 0.5 mmol 4-chloronitrobenzene, 0.75 mmol phenylboronic
acid, 1.5 mmol base, DMF (6 mL).
b
c
65 (Trace)d
Isolated yield.
Yields are of average of two runs.
78
52
91
44
82
86
Table 4
Effects of catalyst quantity in the Suzuki–Miyaura reactionsa of 4-chloronitrobenzene
with phenylboronic acid using complex 2 as catalyst
a
Reaction conditions: 0.5 mmol aryl chloride, 0.75 mmol arylboronic acid,
1.5 mmol K2CO3 DMF (6 mL).
2
Complex (0.05-1 mol%)
+
Cl
NO2
B(OH)2
NO2
K2CO3, DMF, 100 0
C
b
c
Isolated yield.
Yields are of average of two runs.
Entry
Catalyst (mol %)
Time (h)
Yieldb,c (%)
d
The values in the parenthesis indicate yields using complex 1 as catalyst under
similar experimental conditions.
1
2
3
4
5
1.0
0.5
0.2
0.1
0.05
1
1
1
4
24
98
98
98
56
22
aryl chlorides, including sterically demanding ortho-substituted
chlorides, could conveniently be coupled with arylboronic acids.
a
Reaction conditions: 0.5 mmol 4-chloronitrobenzene, 0.75 mmol phenylboronic
acid, 1.5 mmol K2CO3 DMF (6 mL).
Isolated yield.
Acknowledgement
b
c
Yields are of average of two runs.
We gratefully acknowledge the University Grants Commission
(UGC), New Delhi for a research Grant (No: 36-73/2008). The Tez-
pur University and the SAIF, NEHU, Shillong are gratefully
acknowledged for various analytical services.
performance. For instance, para-substituted aryl chlorides bearing
electron withdrawing groups such as nitro (entry 1), aldehyde (en-
try 2), and acetyl (entry 3) showed excellent yields within 2 h of
reaction time, while aryl chlorides bearing electron donating
groups such as methoxy (entry 5) or methyl (entry 6) gave the de-
sired biphenyls in very good yields within a reaction time of 4 h. It
may be noted that under slightly extended reaction time, our cat-
alyst can also tolerate sterically bulky ortho-substituted chlorides
such as 2-chloroanisole (entry 9), 2-chloronitrobenzene (entry
10), or 2-chlorotoluene (entry 12) that gave the desired product
in reasonably good yields. In comparison to ortho-substituted chlo-
rides the meta-substituted chlorides gave slightly better yields (en-
tries 8 and 11). No major differences in yields were observed for
the coupling reaction of 4-chloronitrobenzene, when phenylbo-
ronic acid was replaced by 4-chloroboronic acid (entry 13) or 4-tol-
ylboronic acid (entry 15). However, the coupling reaction between
4-chloronitrobenzene and 3-nitrophenylboronic acid resulted only
in moderate yield (entry 14). To compare the catalytic activity of
complex 2 with complex 1, we performed cross-coupling reactions
of some selected aryl chlorides with complex 1 using the same set
of experimental conditions (Table 5, entries 1, 4, 6, and 10). Inter-
estingly, a marked difference in catalytic activity has been noticed.
For instance, as compared to 98% nitrobiphenyl formation by com-
plex 2, the coupling reaction with complex 1 gave only 63% yield
(entry 1). Similarly, substantially lesser yields were also obtained
with chlorobenzene and 4-chlorotoluene (entries 4 and 6). These
results demonstrate that complex 2 is a better catalyst than com-
plex 1.
References and notes
1. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (b) Suzuki, A. J.
Organomet. Chem. 2002, 653, 83; (c) Polshettiwar, V.; Decottignies, A.; Len, C.;
Fihri, A. ChemSusChem 2010, 3, 502; (d) Molnar, A. Chem. Rev. 2011, 111, 2251;
(e) Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem.,
Int. Ed. 2012, 51, 5062; (f) Liu, N.; Liu, C.; Jin, Z. Chin. J. Org. Chem. 2012, 32, 860.
2. (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387; (b) Littke, A. F.;
Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020.
3. (a) Bedford, R. B.; Cazin, C. S. J. Chem. Commun. 2001, 1540; (b) Andreu, M. G.;
Zapf, A.; Beller, M. Chem. Commun. 2000, 2475.
4. (a) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413; (b) Old, D.
W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722; (c) Barder, T.
E.; Buchwald, S. L. Org. Lett. 2004, 6, 2649.
5. Liang, L.-C.; Chien, P.-S.; Huang, M.-H. Organometallics 2005, 24, 353.
6. (a) Bei, X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S.; Petersen, J. L. J. Org.
Chem. 1999, 64, 6797; (b) Kwong, F. Y.; Lam, W. H.; Yeung, C. H.; Chan, K. S.;
Chan, A. S. C. Chem. Commun. 2004, 1922; (c) Dai, W.-M.; Zhang, Y. Tetrahedron
Lett. 2005, 46, 1377; (d) To, S. C.; Kwong, F. Y. Chem. Commun. 2011, 47, 5079;
(e) Wong, S. M.; So, C. M.; Chung, K. H.; Luk, C. H.; Lau, C. P.; Kwong, F. Y.
Tetrahedron Lett. 2012, 53, 3754.
7. (a) Ghosh, R.; Adarsh, N. N.; Sarkar, A. J. Org. Chem. 2010, 75, 5320; (b) Chow, W.
K.; Yuen, O. Y.; So, C. M.; Wong, W. T.; Kwong, F. Y. J. Org. Chem. 2012, 77, 3543.
8. (a) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67,
5553; (b) Baillie, C.; Zhang, L.; Xiao, J. J. Org. Chem. 2004, 69, 7779; (c) Moseley,
J. D.; Murray, P. M.; Turp, E. R.; Tyler, S. N. G.; Burn, R. T. Tetrahedron 2012, 68,
6010.
9. (a) Tao, B.; Boykin, D. W. Tetrahedron Lett. 2003, 44, 7993; (b) Li, J.-H.; Liu, W.-J.
J. Org. Chem. 2004, 6, 2809; (c) Das, P.; Sarmah, C.; Tairai, A.; Bora, U. Appl.
Organomet. Chem. 2011, 25, 283.
10. (a) Navarro, O.; Kelly, R. A.; Nolan, S. P. J. Am. Chem. Soc. 2003, 125, 16194; (b)
Singh, R.; Viciu, M. S.; Kramareva, N.; Navarro, O.; Nolan, S. P. Org. Lett. 2005, 7,
1829; (c) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P.
J. Am. Chem. Soc. 2006, 128, 4101; (d) Navarro, O.; Marion, N.; Oonishi, Y.; Kelly,
R. A.; Nolan, S. P. J. Org. Chem. 2006, 71, 685; (e) Blakemore, J. D.; Chalkley, M. J.;
Farnaby, J. H.; Guard, L. M.; Hazari, N.; Incarvito, C. D.; Luzik, E. D.; Suh, H. W.
Organometallics 2011, 30, 1818; (f) Sau, S. C.; Santra, S.; Sen, T. K.; Mandal, S. K.;
In summary we have developed a highly stable Schiff-base de-
rived catalyst that can activate aryl chlorides as substrates in Suzu-
ki reactions at a low loading of catalyst (0.2 mol %). A wide range of