S. Tamura et al. / Bioorg. Med. Chem. Lett. 23 (2013) 188–193
193
mixture was cooled to rt and successively purified by HPLC (34%
MeCN aq containing 0.1% TFA) to give 6 (2.4 mg, 2.24 mol, 35%).
and Grants-in-Aid for Scientific Research (No. 23310147), JSPS Bilat-
eral Programs from JSPS, Japan.
l
1H NMR (400 MHz, CD3OD) 9.24 (d, J = 2.0 Hz, 1 H), 8.84 (d,
J = 2.0 Hz, 1 H), 8.57 (s, 1 H), 8.52 (d, J = 2.0 Hz, 1 H), 8.35 (dd,
J = 8.8, 2.0 Hz, 1 H), 8.17 (d, J = 8.8 Hz, 1 H), 7.86–7.84 (m, 2 H),
7.79–7.77 (m, 2 H), 7.67–7.65 (m, 3 H), 7.56–7.52 (m, 2 H), 5.38–
5.27 (m, 2 H), 4.66 (d, J = 7.8 Hz, 1 H), 4.53 (d, J = 13.2 Hz, 1 H),
4.48 (d, J = 13.2 Hz, 1 H), 4.38 (dd, J = 7.8, 4.4 Hz, 1 H), 4.17–4.08
(m, 2 H), 3.99–3.98 (m, 1 H), 3.94 (dd, J = 11.2, 3.2 Hz, 1 H), 3.70–
3.63 (m, 1 H), 3.61–3.58 (m, 2 H), 3.51–3.47 (m, 4 H), 3.34–3.32
(m, 3 H), 3.04–3.00 (m, 1 H), 2.78 (dd, J = 12.8, 4.8 Hz, 1 H), 2.60
(d, J = 12.8 Hz, 1 H), 2.54–2.50 (m, 1 H), 2.39–2.08 (m, 9 H), 1.98–
1.82 (m, 2 H), 1.68–1.28 (m, 7 H); 13C NMR (100 MHz, CD3OD), d
221.5, 197.6, 176.7, 175.9, 168.0, 166.0, 150.0, 149.4, 147.3,
139.8, 138.4, 137.7, 136.9, 134.1, 131.6 (2C), 131.5 (2C), 131.3,
131.0 (2C), 130.6, 130.2, 129.6 (2C), 129.5, 129.3, 128.8, 128.4,
126.1, 124.8, 100.5, 75.2, 70.5, 69.7, 63.3, 61.6, 59.5, 56.8, 55.1,
53.6, 52.1, 51.3, 41.2, 41.0, 40.0, 39.7, 39.0, 38.7, 36.9, 29.7, 29.5,
28.9, 28.2, 26.9, 26.2; HRMS (ESI, positive) m/z [M+H]+ calcd for
Supplementary data
Supplementary data (synthesis of alkyne units and NMR charts
of probes) associated with this article can be found, in the online
References and notes
1. Ueda, M. Chem. Lett. 2012, 41, 658.
2. Leslie, B. J.; Hergenrother, P. J. Chem. Soc. Rev. 2008, 37, 1347.
3. Bottcher, T.; Pitscheider, M.; Sieber, S. A. Angew. Chem., Int. Ed. Engl. 2010, 49,
2680.
4. Hashimoto, M.; Yang, J.; Holman, G. D. ChemBioChem 2001, 2, 52.
5. Sato, S.-I.; Kwon, Y.; Kamisuki, S.; Srivastava, N.; Mao, Q.; Kawazoe, Y.; Uesugi,
M. J. Am. Chem. Soc. 2007, 129, 873.
6. Shiyama, T.; Furuya, M.; Yamazaki, A.; Terada, T.; Tanaka, A. Bioorg. Med. Chem.
2004, 12, 2831.
7. Ueda, M.; Manabe, Y.; Mukai, M. Bioorg. Med. Chem. Lett. 2011, 21, 1359.
8. Sato, S.; Murata, A.; Shirakawa, T.; Uesugi, M. Chem. Biol. 2010, 17, 616.
9. Dean, P. M.; Cambridge University Press: Molecular foundations of drug-
receptor interaction, 1987.
10. Nakamura, Y.; Miyatake, R.; Ueda, M. Angew. Chem., Int. Ed. Engl. 2008, 47, 7289.
11. Abuchowski, A.; Mccoy, J. R.; Palczuk, N. C.; Vanes, T.; Davis, F. F. J. Biol. Chem.
1977, 252, 3582.
12. Harris, J. M. Poly (Ethylene Glycol) Chemistry Biotechnical and Biomedical
Applications; Springer, 1992.
13. Tamura, T.; Terada, T.; Tanaka, A. Bioconjug. Chem. 2003, 14, 1222.
14. Nakamura, Y.; Inomata, S.; Ebine, M.; Manabe, Y.; Iwakura, I.; Ueda, M. Org.
Biomol. Chem. 2011, 9, 83.
15. Nakamura, Y.; Mithöfer, A.; Kombrink, E.; Boland, W.; Hamamoto, S.; Uozumi,
N.; Tohma, K.; Ueda, M. Plant Physiol. 2011, 155, 1226.
16. Ueda, M.; Okazaki, M.; Ueda, K.; Yamamura, S. Tetrahedron 2000, 56, 8101.
17. Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952.
18. Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
19. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 2004, 2001,
40.
20. Ueda, M.; Yang, G.; Ishimaru, Y.; Itabashi, T.; Tamura, S.; Kiyota, H.; Kuwahara,
S.; Inomata, S.; Shoji, M.; Sugai, T. Bioorg. Med. Chem. 2012, 20, 5832.
21. Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G. Angew. Chem., Int. Ed. Engl. 2009, 48,
9879.
22. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853.
23. Fujita, Y.; Yonehara, M.; Tetsuhashi, M.; Noguchi-Yachide, T.; Hashimoto, Y.;
Ishikawa, M. Bioorg. Med. Chem. 2010, 18, 1194.
24. Ueda, M.; Yamamura, S. Angew. Chem., Int. Ed. Engl. 2000, 39, 1400.
25. Ueda, M.; Nakamura, Y. Nat. Prod. Rep. 2006, 23, 548.
C
56H66N9O11S, 1072.4602, found 1072.4588.
To a solution of azide 13 (2.0 mg, 3.27 mol) and alkyne unit 12
(1.3 mg, 2.79 mol) in DMSO/250 mM HEPES buffer (pH 7) (4:1)
l
l
were added CuSO4ꢄ5H2O–THPTA complex (5 mol %) and ascorbic
acid (50 mol %). After being shaken for 1 h at 30 °C, the reaction
mixture was cooled to rt and successively purified by HPLC (34%
MeCN aq containing 0.1% TFA) to give 7 (1.4 mg, 1.31 lmol, 45%).
1H NMR (400 MHz, CD3OD) 9.28 (d, J = 2.0 Hz, 1 H), 8.80 (d,
J = 2.0 Hz, 1 H), 8.64 (s, 1 H), 8.52 (s, 1 H), 8.23–8.15 (m, 2 H),
7.86–7.84 (m, 2 H), 7.79–7.77 (m, 2 H), 7.67–7.65 (m, 3 H), 7.56–
7.52 (m, 2 H), 5.37–5.26 (m, 2 H), 4.67 (d, J = 8.2 Hz, 1 H), 4.53
(d, J = 13.2 Hz, 1 H), 4.48 (d, J = 13.2 Hz, 1 H), 4.38 (dd, J = 8.2,
4.8 Hz, 1 H), 4.15–4.12 (m, 2 H), 3.98–3.98 (m, 1 H), 3.95–3.91
(m, 1 H), 3.69–3.65 (m, 1 H), 3.61–3.58 (m, 2 H), 3.51–3.47 (m, 4
H), 3.34–3.32 (m, 3 H), 3.02–2.96 (m, 1 H), 2.79 (dd, J = 12.8,
5.2 Hz, 1 H), 2.61 (d, J = 12.8 Hz, 1 H), 2.55–2.50 (m, 1 H), 2.26–
2.20 (m, 9 H), 2.00–1.84 (m, 2 H), 1.64–1.28 (m, 6 H), 0.96–0.86
(m, 1 H); 13C NMR (100 MHz, CD3OD), d 221.8, 197.9, 176.7,
174.6, 168.0, 167.8, 150.0, 149.0, 147.4, 139.7, 139.1, 137.9,
135.2, 134.0, 131.5 (2C), 131.3, 131.0 (2C), 131.0 (2C), 130.6,
130.1, 129.6 (2C), 129.4, 129.2, 128.9, 128.6, 125.1, 123.9, 101.4,
75.1, 70.4, 69.7, 63.3, 61.6, 59.6, 56.9, 55.2, 53.5, 52.2, 51.3, 41.1,
41.0, 39.9, 39.7, 38.9, 38.7, 36.8, 29.7, 29.4, 28.9, 28.2, 26.8, 26.1;
HRMS (ESI, positive) m/z [M+H]+ calcd for C56H66N9O11S,
1072.4602, found 1072.4602.
26. Anderson, P. M.; Wilson, M. R. Mol. Phys. 2005, 103, 89.
27. Xue, Y.; O’Mara, M. L.; Surawski, P. P. T.; Trau, M.; Mark, A. E. Langmuir 2011,
27, 296.
28. Wahab, S. A.; Matsuura, H. PCCP 2001, 3, 4689.
29. Hansch, C.; Quinlan, J. E.; Lawrence, G. L. J. Org. Chem. 1968, 33, 347.
30. Valvani, S. C.; Yalkowsky, S. H.; Roseman, T. J. J. Pharm. Sci. 1981, 70, 502.
31. CL0ogP of each probe was estimated from OSIRIS property explorer (http://
The aqueous solubility of each probe was determined in miliQ
at room temperature. MiliQ (20 lL) was added to an excess
32. Jain, N.; Yalkowsky, S. H. J. Pharm. Sci. 2001, 90, 234.
33. Ishikawa, M.; Hashimoto, Y. J. Med. Chem. 2011, 54, 1539.
34. GAUSSIAN 03 (Revision D.02): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,
G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.;
Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda,
Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;
Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford,
S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,
C.; Pople, J. A. GAUSSIAN, Inc., Wallingford CT, 2004.
amount of each probe to prepare a saturated solution. The suspen-
sion was kept in an ultrasonic bath for 15 min and vigorously sha-
ken by a vortex mixer for 10 min. Afterwards, the mixture was
allowed to stand for 30 min, and the suspension was then centri-
fuged (4000 rpm, 2 min). The resultant supernatant was trans-
ferred to a new tube and centrifuged (15,000 rpm, 3 min) again.
Finally, the concentration of the probe in this supernatant was ana-
lyzed by UPLC–MS.
Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Research
on Innovative Areas ‘Chemical Biology of Natural Products’ from the
Ministry of Education, Culture, Sports, Science and Technology, Japan,