Hamilton14 and Hirschmann/Smith,15 for instance, em-
ployed a similar concept before us. However, we have
recently noted3b that scaffolds described as minimalist
tend to be superimposable on other elements of secondary
structure; i.e. they tend to be promiscuous. In fact, this is
true of compounds 1. Figure 3 illustrates how scaffold 1
can be overlaid with the i þ 1 and i þ 2 side chains of an
ideal type I β-turn and with i þ 1 and i þ 2 of an inverse
γ-turn.
Peptidomimetic scaffolds that overlap more than one
secondary structure may appear to be vulnerable to non-
selective binding. This is not so, however, because proteins
are targeted by proteins/peptides by choosing the corre-
sponding side chains.16 Thus duality, or even multiplicity,
of fit increases the value of scaffolds for secondary struc-
ture mimics because they can be applied more widely, par-
ticularly in libraries designed for high throughput screening
against many diverse targets.3b In our opinion, this is a
concept that should become more widely applied in pepti-
domimetic design.
Acknowledgment. Financial support for this project was
provided by the National Institutes of Health (MH070040,
GM076261) and the Robert A. Welch Foundation (A-
1121). TAMU/LBMS-Applications Laboratory provided
mass spectrometric support. The NMR instrumentation at
Texas A&M University was supported by a grant from the
National Science Foundation (DBI-9970232) and the Texas
A&M University System.
Figure 3. Overlay with the i þ 1 and i þ 2 side chains of an ideal
type I β-turn (a) and with the i þ 1 and i þ 2 side chains of an
inverse γ-turn (b).
in protein and peptide conformations, i.e. type I.13 In our
group, we refer to compounds like this, ones that achieve
mimicry using only appropriately projected side chains, as
minimalist mimics.3a Though they did not use this term,
(13) Rose, G. D.; Gierasch, L. M.; Smith, J. A. Turns in Peptides and
Proteins; Academic Press, Inc.: 1985; Vol. 37, p 1.
Supporting Information Available. Experimental pro-
cedures and characterization data for the new compounds
reported. This material is available free of charge via the
(14) (a) Kim, I. C.; Hamilton, A. D. Org. Lett. 2006, 1751. (b) Yin, H.;
Lee, G.; Sedey, K. A.; Kutzki, O.; Park, H. S.; Orner, B. P.; Ernst, J. T.;
Wang, H.-G.; Sebti, S. M.; Hamilton, A. D. J. Am. Chem. Soc. 2005,
10191. (c) Davis, J. M.; Truong, A.; Hamilton, A. D. Org. Lett. 2005,
5405. (d) Ernst, J. T.; Becerril, J.; Park, H.; Yin, H.; Hamilton, A. D.
Angew. Chem., Int. Ed. 2003, 535. (e) Kutzki, O.; Park, H. S.; Ernst, J. T.;
Orner, B. P.; Yin, H.; Hamilton, A. D. J. Am. Chem. Soc. 2002, 11838.
(f) Peczuh, M. W.; Hamilton, A. D. Chem. Rev. 2000, 2479. (g) Wilson,
A. J.; Hong, J.; Fletcher, S.; Hamilton, A. D. Org. Biomol. Chem. 2007,
276. (h) Davis, J. M.; Tsou, L. K.; Hamilton, A. D. Chem. Soc. Rev.
2007, 326. (i) Becerril, J.; Hamilton, A. D. Angew. Chem., Int. Ed. 2007,
4471. (j) Fletcher, S.; Hamilton, A. D. Curr. Top. Med. Chem. 2007, 922.
(k) Yin, H.; Lee, G.-I.; Hamilton, A. D. Drug Discovery Res. 2007, 281.
(l) Yin, H.; Hamilton, A. D. Protein secondary structure mimetics as
modulators of protein-protein and protein-ligand interactions. In
Chemical Biology: From Small Molecules to System Biology and Drug
Design; Schreiber, S. L., Kapoor, T. M., Wess, G., Eds.; Wiley-VCH: 2007;
Vol. 1, pp 250. (m) Becerril, J.; Rodriguez, J. M.; Saraogi, I.; Hamilton,
A. D. Foldamers 2007, 195. (n) Rodriguez, J. M.; Hamilton, A. D.
Angew. Chem., Int. Ed. 2007, 8614. (o) Fletcher, S.; Hamilton, A. D. J. R.
Soc. Interface 2006, 215.
(15) (a) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Salvino, J.;
Leahy, E. M.; Sprengeler, P. A.; Furst, G.; Smith, A. B., III. J. Am.
Chem. Soc. 1992, 9217. (b) Hirschmann, R.; Nicolaou, K. C.; Pietranico,
S.; Leahy, E. M.; Salvino, J.; Arison, B.; Cichy, M. A.; Spoors, P. G.;
Shakespeare, W. C.; Sprengeler, P. A.; Hamley, P.; Smith, A. B., III;
Reisine, T.; Raynor, K.; Maechler, L.; Donaldson, C.; Vale, W.;
Freidinger, R. M.; Cascieri, M. R.; Strader, C. D. J. Am. Chem. Soc.
1993, 12550. (c) Hirschmann, R.; Sprengeler, P. A.; Kawasaki, T.;
Leahy, J. W.; Shakespeare, W. C.; Smith, A. B., III. J. Am. Chem.
Soc. 1992, 114, 9699. (d) Mowery, B. P.; Prasad, V.; Kenesky, C. S.;
Angeles, A. R.; Taylor, L. L.; Feng, J.-J.; Chen, W.-L.; Lin, A.; Cheng,
F.-C.; Smith, A. B.; Hirschmann, R. Org. Lett. 2006, 4397.
(16) (a) Conte, L. L.; Chothia, C.; Janin, J. J. Mol. Biol. 1999, 2177.
(b) Keskin, O.; Ma, B.; Nussinov, R. J. Mol. Biol. 2005, 1281. (c)
Moreira, I. S.; Fernandes, P. A.; Ramos, M. J. Proteins: Struct., Funct.,
Bioinf. 2007, 803.
Org. Lett., Vol. 13, No. 5, 2011
983